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Abstract

A novel architecture and set of learning rules for cortical self-organization is pro-
posed. The model is based on the idea that multiple information channels can mod-
ulate one another’s plasticity. Features learned from bottom-up information sources
can thus be influenced by those learned from contextual pathways, and vice versa. A
maximum likelihood cost function allows this scheme to be implemented in a biologi-
cally feasible, hierarchical neural circuit. In simulations of the model, we first demon-
strate the utility of temporal context in modulating plasticity. The model learns a
representation that categorizes people’s faces according to identity, independent of
viewpoint, by taking advantage of the temporal continuity in image sequences. In a
second set of simulations, we add plasticity to the contextual stream and explore vari-
ations in the architecture. In this case, the model learns a two-tiered representation,
starting with a coarse view-based clustering and proceeding to a finer clustering of
more specific stimulus features. This model provides a tenable account of how people
may perform 3D object recognition in a hierarchical, bottom-up fashion.



1 Introduction: context, coherence and plasticity

Context effects, both spatiotemporal and top-down, are ubiquitous in behavior and can
also be observed at the neuronal level. The ability of context to influence perception has
been demonstrated in many domains. For example, letters are recognized more quickly
and accurately in the context of words (see e.g. McClelland & Rumelhart, 1981), while
words are recognized more efficiently when preceded by related isolated words (see e.g.
Neely, 1991), sentences or passages (Hess et al., 1995). In the compelling “McGurk effect”
(McGurk & MacDonald, 1976; MacDonald & McGurk, 1978), a person is presented with
a videotape of auditory information for one utterance simultaneously paired with visual
information for another utterance. However, the mismatch typically goes unnoticed. What
happens is that for some sound pairs, the person’s percept tends to be dominated by the
auditory cues, in other cases the visual cues dominate, and in still other cases, various
fusions and/or alternations of the two sources are perceived. Apparently, when the two
modalities provide contradictory information, people choose which modality to believe and
which to ignore, or whether to fuse the modalities, according to the context.

Further, the importance of contextual information in modulating neuronal response
profiles is becoming increasingly apparent. For example, some visual cortical cells (in the
deepest layer of area V1) have been found that are excited by an oriented stimulus in
the centre of their receptive field, and show an enhanced response to a similarly oriented
stimulus in the surrounding region; on the other hand, the response is suppressed by an
orthogonally oriented stimulus in the surround (Cudeiro & Sillito, 1996). In contrast, some
cells show just the opposite pattern: they are antagonized by a similarly-oriented stimulus
in the surround, and facilitated by an orthogonally-oriented stimulus (Sillito et al., 1995).
On the other hand, about 40% of complex cells (in the superficial layers of area V1) are
facilitated by the conjunction of a line segment in their classical receptive field and a
colinear line segment placed nearby, outside their classical receptive field (Gilbert et al.,
1996). Moreover, even in primary visual cortex, cells’ tuning curves (in all cortical layers)
are sensitive to the temporal history of the input signal and can show bimodal peaks
and even complete reversals in tuning over time (Ringach et al., 1997). These examples
demonstrate that neuronal responses can be modulated by secondary sources of information
in complex ways.

Why would contextual modulation be such a pervasive phenomenon? One obvious
reason is that if context can influence processing, it can help in disambiguating or cleaning
up noisy stimuli. However, an over-reliance on contextual cues leaves the system open to the
possibility of information loss, for example, by smearing information across discontinuities.
A less obvious reason why context is so pervasive may be that if context can influence
learning, it may lead to more compact and powerful representations, whereby units encode
complex stimulus configurations.

In this paper, we focus particularly on temporal contert. Most unsupervised classifiers



Figure 1: Two sequences of 48 by 48 pixel images digitized with an IndyCam and prepro-
cessed with an edge filter using SGI’s Image Works. Eleven views of each of four to ten
faces were used in the simulations reported here. The alternate (odd) views of two of the
faces are shown above.

are insensitive to temporal context; that is, they group patterns together solely on the
basis of spatial overlap. This may be reasonable if there is very little shift or other form of
distortion between one time step and the next, but is not a reasonable assumption about
the sensory input to the cortex. Pre-cortical stages of sensory processing, certainly in the
visual system and probably in other modalities, tend to remove low-order correlations in
space and time (see, e.g., Dong and Atick’s (1995) model of LGN cells). Consider the
images in Figure 1. The top row shows a series of snapshots of one person’s face being ro-
tated through 180 degrees. The bottom row shows a series of snapshots of another person’s
face, also being rotated through 180 degrees. They have been preprocessed by a simple
edge-filter, so that successive views of the same face have relatively little pixel overlap.
Even in these low-resolution images, we can see certain regularities in the features of each
individual. For example, each person’s head shape remains consistent across changes in
viewpoint. With respect to raw pixel overlap, however, two snapshots of a given individ-
ual’s face taken from very different viewpoints often have less in common than snapshots of
two different individuals’ faces taken from the same viewpoint. This creates a difficult chal-
lenge for unsupervised learning systems. Unsupervised learning procedures like principal
components analysis and clustering can only model lower-order structure (e.g. covariance
or Euclidean proximity). How could a self-organizing system discover the higher-order
structure shared by radically different views of the same object, and ignore the lower-order
structure shared by identical views of different objects? Clearly, we have a long way to
go in understanding what sort of learning procedures are employed by the brain, to form
distributed representations and account for our high-level perceptual abilities.

One powerful cue for real vision systems is the temporal continuity of objects. Novel
objects typically are encountered from a variety of angles, as the position and orientation of
the observer, or objects, or both, vary smoothly over time. It would be very surprising if the



visual system did not capitalize on this temporal continuity in learning to group together
visual events that co-occur in time. In the Discussion section, we mention several lines
of empirical evidence in support of this notion. In the model of cortical self-organization
proposed here, we postulate that contertual modulation plays a critical role in guiding
unsupervised class formation. The term “context” is used very generally here to mean any
secondary source of input; it could be from a different sensory modality, a different input
channel within the same modality, a temporal history of the input, or top-down information
from descending pathways. Although in the simulations reported here we specifically focus
on temporal context in the visual system, the same ideas should be applicable to a variety
of other sources of context (see Discussion) in a variety of cortical areas.

2 Maximum likelihood cost function

Given that we have identified context as an important cue in learning, the next step is to
formalize this notion. We propose maximizing a log likelihood cost function, as in (Nowlan,
1990; Jacobs et al., 1991). In this framework, the network is viewed as a probabilistic,
generative model of the data. The learning serves to adjust the weights so as to maximize
the log likelihood of the model having generated the data:

L = logP(data | model). (1)

If the training patterns, I(®, are independent,

L = log [[ P(I'® | model)

a=1

= Y log P(I'® | model). (2)

a=1

However, this assumption of independence is not valid under natural viewing conditions.
If one view of an object is encountered, a similar view of the same object is likely to be
encountered next. In this paper, we propose an extension to the above model in which the
independence assumption is relaxed, so that the inputs are only assumed to be independent
given the context. In the most general case, the context could be any additional source
of information. In the simulations reported here, we explore the special case where the
temporal history of the input acts as the context.

There are several advantages to this approach. First, having a global cost function for
the learning provides a principled basis for deriving learning rules in a network. Second,
the maximum likelihood cost function sets up a very reasonable goal for the learning:
modelling the probability distribution of the data. Third, by choosing an appropriate
parametric form for the model, that is, the network architecture and associated statistical
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assumptions, we can incorporate the added goal of allowing contextual input to modulate
the learning.

2.1 Maximum Likelihood Competitive Learning (MLCL)

In Maximum Likelihood Competitive Learning (MLCL) (Nowlan, 1990), the units have
Gaussian activations, y;, and the network forms a mixture-of-Gaussians model of the data.
The result is a simple and elegant network implementation of a widely used statistical
clustering algorithm. A “soft competition” among the units, rather than a winner-take-all,
“hard competition”, determines the relative activation levels of the units and hence their
learning rates for each pattern. This causes each unit to become selective for a different
region of the input space.
The following cost function forms the basis for MLCL:

L = leog lz P(I'Y | submodel;) P(submodel;)
a= i=1

where the 7;’s are positive mixing coefficients that sum to one, and the y;’s are the unit
activations:

where N() is the Gaussian density function, with mean w; and covariance matrix ;. Here
and throughout the paper, we use the term “submodel” to refer to a Gaussian component
in the mixture model. So y; represents the probability of the input vector under the ¢th
submodel, a Gaussian centred on the sth unit’s weight vector, w;. The ith mixing coeffi-
cient, 7;, represents the prior probability of the ith Gaussian having generated the data.
In MLCL, the Gaussian means, W;, are obtained by maximizing over L, and the mixing
coefficients are either fixed to equal values or alternatingly re-estimated after each update
of the model parameters as in the EM algorithm (Dempster et al., 1977). For simplicity,
Nowlan typically used a single global variance parameter for all input dimensions, and
allowed it to shrink during learning. L can be maximized by online gradient ascent' with
learning rate ¢:

Aw;; = € =¢

8L Ky yi(a) (
Ow;; = Yk Tk Ykl

L — wy) (5)

!Nowlan (1990) used a slightly different online weight update rule that more closely approximates the
batch update rule of the EM algorithm.



The term % represents the 7th submodel’s probability given the current pattern
k

and context. It is normalized over all competing units (submodels), hence the term “soft
competition”. A long-time average of this probability over many data items represents 7;,
the overall probability of the ith submodel. Thus, this rule is quite biologically plausible.
It consists of a Hebbian update rule with weight decay, using normalized post-synaptic
unit activations.

2.2 Contextually modulated competitive learning (CMCL)

MLCL assumes the input patterns are independent. If we remove this restriction, allowing
for temporal dependencies amongst the input patterns, the log likelihood function becomes:

L = logP(data | model)
= Y log P(I [ 1M, ..., 1V ‘model) (6)

To incorporate a contextual information source into the learning equation, we extend
MLCL by introducing a contextual input stream into the likelihood function:

L = logP(data | model, context)
= Y log P(I'™ | IW, ..., 1®® Y model, context) (7)

Unlike the model underlying standard MLCL, we want to deal with input streams that
may contain arbitrarily complex temporal dependencies. Suppose the input and context
represent two separate streams of observable data, with unknown interdependencies. This
situation is depicted in Figure 2 a). Taken together, the input and context can be viewed
as an ordered sequence of pairs, (I(®), C(®), where C® is the contextual input pattern on
training case .

We now consider several simplifying assumptions that result in a tractable model. Our
first assumption is that the model consists of a mixture of submodels. The log likelihood
then becomes:

L = Ylog | pI® |10, . 1D oW . C®, submodel,)
o J
P(submodel; | IO, ... 1D cW 0@)] (8)
Second, let us assume that the probability of observing a particular input pattern is

independent of other patterns when conditioned on the context sequence, and vice versa.
In other words, all of the temporal dependencies in the input stream can be accounted for
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Figure 2: The conditional dependencies amongst the observable variables (context and
input) are depicted in three situations. In a), the long-range dependences within the two
sequences are shown. In b), the interdependencies within the two sequences disappear
when each element in the top sequence is conditioned on the bottom sequence, and vice
versa. In c), the sequences become independent of each other when conditioned on the
hidden variables (the “submodel” indices).



by knowing the context, and vice versa. This situation is depicted in Figure 2 b). Now we
have:

L = Ylog | PI®|cW,. .. ,C®, submodel,)
a J

P(submodel; | 0 e o ,C(a))] (9)

Finally, let us assume that given the submodel, the input and context are independent.
In other words, all the remaining dependencies in the observable data are explained away
by knowing which submodel generated the data at each point in time. This situation is
depicted in Figure 2 ¢). Now the likelihood equation simplifies to:

L = Zlog

3" P(I® | submodel;) P(submodel; | IW, ... 1D c® . C@)
J

= Y log [Z 5@ gj<a>] (10)
a=1 J

where gj(a) represents the probability of the jth submodel given the input and context,
and yj("‘) represents the probability of the input under the jth submodel.

3 Network implementation

The CMCL cost function given in equation 10 could be implemented in a variety of archi-
tectures, depending upon how much computational power is allocated to individual units.
In the Discussion section, we explore this issue further, and consider the potential ad-
vantage of more powerful units with nonlinear synaptic interactions. In the simulations
reported here, we used multi-layer circuits consisting of an input layer, a layer of clustering
units, and a layer of gating units as in Figure 3. We chose the term “gating units” because
their role here is analogous to that of the gating network in the “competing experts” model
(Jacobs et al., 1991). In fact, the model proposed here could be viewed as an unsuper-
vised version of the mixture of competing experts architecture. Jacobs et al.’s competing
experts network performs supervised learning, and can be interpreted as fitting a mixture
of Gaussians model of the training signal. In contrast, here the clustering units (experts)
are fitting a mixture model to the input signal, while the gating units simultaneously are
adapting to the context signal, in order to help the clustering units divide up the input
space. This is very different from a model that separately clusters the input and context
signals because here, contextual features are used to modulate the partitioning of the input
space. As our simulations show, this results in a very different clustering of the inputs.



The clustering units receive the primary source of input to the network. As in MLCL,
each clustering unit produces an output v;(* proportional to the probability of the input
pattern, I(®, given the ith submodel (this would be exactly equal to the probability if it
were normalized). Each ;(®) is computed as a Gaussian function of its current input:

yi(a) — o M@ —i|?/o? (11)

where || - || is the L2 norm, wj; is the weight vector for the ith clustering unit representing
the mean of the ith Gaussian, and ¢?; is the variance of that Gaussian, assuming all
Gaussians are spherical. The gating units receive the contextual stream of input, and
produce outputs ¢;(*) representing the probability of the ith submodel given the current
context, C(®. For the simulations reported here, the gating units compute their outputs
according to a “softmax function” (Bridle, 1990) of their weighted summed inputs z;(®:

g;z(a)
(@ _— _°€ . 12
Gi Zj ) ( )
2 = 3Ol (13)
k

where j indexes over all gating units in the network, and v;; is the weight on the connection
from the kth contextual input to the ith gating unit. Here, we have made a further
simplifying assumption that the prior probabilities of the submodels (the p(submodel;)
terms in equation 10) are all equal and fixed, and can therefore be folded into the gating
units’ activations g;. Alternatively, assuming the probabilities of choosing each submodel
form a Markov chain, that is, they depend only on knowledge one step back in time,
one could then estimate the true probabilities of submodels under a Hidden Markov Model
(HMM) (as suggested by Hinton, personal communication). This would allow for temporal
dependencies between the submodels over time to be modelled explicitly. Cacciatore and
Nowlan (1994) have extended the mixture of competing experts model in this way, to
allow recurrent gating networks. See the Discussion for further comments on the relation
between HMMs and our model.

4 The learning equations

Given the likelihood function defined by equation 10, online learning rules for the clustering
and gating units can be derived by differentiating L with respect to their weights. The
variances of each of the Gaussians, o7, could be approximated by their maximum likelihood
estimates under a mixture model, as in the EM algorithm (Dempster et al., 1977). Instead,
we used a simple online approximation to the true variance of the input vector about each
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Figure 3: A neural circuit for implementing CMCL.

clustering unit’s weight vector:
o™ = k3 (wh + (1)) (14)
J

where k is a constant. This approximation would be exact, to within a constant factor,
if the input vectors were of fixed length and uncorrelated with the weight vectors. In the
first set of simulations reported here, £ = 0.05, and in the second set, £ = 0.03. The main
role of the adaptive variance in the learning is to scale the clustering unit activations, to
prevent them from overfitting the training patterns.

The learning rule for the weight from the jth input to the ith clustering unit for input
pattern « is:

oL 8yz (@)
€
Oy Owy;

= ¢ 9 ! (Ij(a) — Wi + Wi 1120~ wi | ) (15)
Ek gk(a) yk(a) 0i2(a) Zk(Ik(a))Q + wik2

where ¢ is a learning rate constant.
The learning rule for the weight from the jth contextual input to the ¢th gating unit
for input pattern « is:

Aw,-j

oL 6g,~(°‘)
£
89,-(0‘) a’l)ij

A’Uij
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As a consequence of the multiplicative interaction between the gating and clustering
units’ activations in the cost function (Equation 10), each gating unit’s activation modu-
lates the corresponding clustering unit’s learning. Thus, the clustering units are encouraged
to discover features that agree with the current contextual gating signal (and vice versa).
At any given moment in time, if their contextual gating signal is weak, or if they fail to
capture enough activation from their bottom-up input, they will do very little learning.
Only when a clustering unit’s weight vector is sufficiently close to the current input vector
and its corresponding gating unit is strongly active will it do substantial learning.

5 Simulations with network 1

Our first set of simulations was designed to demonstrate the utility of temporal context in
contributing to higher-order feature extraction and viewpoint-invariant object recognition.
For these simulations, the gating connection weights were held fixed. Our second set of
simulations was designed to generalize these findings to a network with adaptive links in
the gating layer, and to show that by varying the architectural constraints, the network
could develop pose-tuned rather than viewpoint-invariant face-tuned units.

For our first set of simulations, we used networks of the form shown in Figure 4. The
network is subdivided into modules. Here, each module consists of one or more clustering
units and one gating unit. In our second set of simulations, modules contain multiple gating
units and only one clustering unit. The contextual inputs are time-delayed, temporally
blurred versions of the outputs of a module (including both gating and clustering units’
outputs). The gating units’ outputs are softmax functions of their weighted summed
blurred inputs. The temporal blurring on the contextual input lines was achieved by
accumulating the activation on each connection as follows:

Ci = 0.5(C; ™Y + input; V) (17)

where input;(® is the ith input to the gating unit before blurring for pattern «; this input
could be equal to the output of either a clustering unit in the layer below or the output of
the gating unit itself (see Figure 4). However, more general forms of context are possible,
as mentioned in the Discussion section. We have deviated from the general form of the
architecture shown in Figure 3 in an important way: There is now a many:one mapping
from clustering units to gating units, so that clustering units within the same module i
receive a shared gating signal, g;, and produce outputs y;;. Thus, clustering units in the
same module are responsible for learning different submodels, but they predict the same
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contextual feature. The likelihood equation now becomes:

n m o 1 ! N
L = ) log [Z 9" 7 > it )] (18)
a=1 =1 j=1

To relate this to the original mixture model given by equation 10, we still have a single
mixture of Gaussian submodels, with each clustering unit corresponding to a submodel.
However, the probabilities over submodels (the g;s) given the inputs and contexts have
some equality constraints imposed, so that clustering units in the same module share the
same submodel probability.

One might predict that clustering units with a shared source of contextual input would
all come to detect exactly the same feature. Fortunately, there is a disincentive for them
to do so: They would then do poorly at modelling the input. Thus, clustering units in the
same module should come to encode a common part of the context but detect different
features.

Our network architecture was designed with several goals in mind. First, the mod-
ular, layered architecture is meant to constrain the network to develop hierarchical rep-
resentations and functional modularity, as observed in the cortical laminae and columns
respectively (see e.g. (Calvin, 1995)). That is, we should see a progression from simple
to higher-order features in the clustering and gating layers, with functional groupings of
similar features in units within the same module. Second, we expect the temporal context
to influence the sort of features learned by the clustering layer; each clustering unit should
detect a different range of temporally correlated features.

To test the predictions of our model, we performed simulations with networks like the
one shown in Figure 4 trained on sequences of patterns like the ones shown in Figure 1. The
training patterns consisted of a set of image sequences of ten centered, gradually rotating
faces. In our first set of simulations, there were four modules and only four of the ten faces
were used; in the final simulations, the generality of our findings was extended by training a
larger network of ten modules like the ones shown in Figure 4 on all ten faces. In both cases,
there were three clustering units per module. It was predicted that the clustering units
should discover “features” such as temporally correlated views of specific faces. Further,
different views of the same face should be represented by different clustering units within
the same module because they will be observed in the same temporal context, while the
gating units should respond to particular individual’s faces, independent of viewpoint.

The training and testing pattern sets were created by repeatedly visiting each of the
ten faces in random order. For each face, an ordered sequence of views was presented to
the network, by randomly choosing either a left-facing or right-facing view as the initial
view in the sequence, and then presenting the remaining views of that face in an ordered
sequence. For a given face sequence, views were presented in an ascending order and then a
descending order (e.g. rotating through 180 degrees to the right and then to the left), so the
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Figure 4: The architecture used in the first set of simulations reported here. The gating
units received all their inputs across unit delay lines with fixed weights of 1.0. For these
simulations, some of the networks had an architecture with four modules exactly as shown
here, and were trained on sequences of images of four individuals’ faces. For the remaining
simulations, the networks had ten modules like the ones shown above, and were trained on
sequences of ten individuals’ faces.
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initial view was always the final view in each sequence. At the end of each face sequence,
a new face and starting view were randomly selected. The network had no knowledge of
when a new face would occur or that the training set actually contained ordered sequences.
Thus, although the network assumes that temporal context is smooth everywhere, in these
data, it is actually discontinuous across the boundaries between sequences.

Gating units had self-links, as well as links from all the clustering units within the
same module, all of which had unit time delays. All the gating unit connections had fixed
weights of 1.0. Thus, each gating unit received a temporal history of its own output and
of the outputs of the clustering units in the same module.

Tuning curves for all units in the network in a typical run are plotted in Figures 5
and 6. The clustering units became specialized for detecting particular faces in a narrow
range of views, as shown in Figure 5. Simply by accumulating a temporal history of the
clustering units’ activations within a module, each gating unit was then able to respond to
an individual face, independent of viewpoint, as shown in Figure 6. Of course, the tuning
curves for the gating layer shown here depend upon there being continuity in the context
signal both during training and testing.

One might wonder how much of the network’s ability to discriminate faces was due
to the temporal context, and how much was simply due to unsupervised clustering, inde-
pendent of the contextual modulation. To answer this question, the baseline effect of the
temporal context on clustering performance was assessed by comparing the network shown
in Figure 4 to the same network with all connections into the gating layer removed. The
latter is equivalent to MLCL with fixed, equal mixing proportions (7;’s). First, networks
with four modules were trained on sequences of four faces. To quantify clustering perfor-
mance, each unit was assigned to predict the face class for which it most frequently won
(was the most active). Then for each pattern, the layer’s activity vector was counted as
correct if the winner correctly predicted the face identity. Generalization performance was
assessed by training the network only on the odd-numbered views, and testing classification
performance on the even-numbered views.

The results are summarized in Table 1. As one would expect, the temporal context
provides incentive for the clustering units to group successive instances of the same face
together, and the gating layer can therefore do very well at classifying the faces with a
much smaller number of units - i.e., independently of viewpoint. In contrast, the clustering
units without the contextual signal are more likely to group together instances of different
people’s faces.

Next, a network like the one shown in Figure 4 but with 10 modules was presented
with a set of 10 faces, 11 views each. As before, the odd-numbered views were used for
training and the even-numbered views for testing. Without the influence of the context
layer, the network’s classification performance was very poor. With the addition of con-
textual modulation, this network still had difficulty classifying all ten faces correctly, and
seemed to be somewhat more sensitive to the weights on the gating connections. However,
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Figure 5: Thirty clustering units’ normalized activations are plotted against face identity
(bottom left axis) and viewing angle (bottom right axis) of patterns. Each graph shows
the activations of a single unit over the entire set of training patterns. Units in the same
row were trained with a common contextual gating signal (see Figure 4), and have learned
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Figure 6: Ten gating units’ activations are plotted against face identity (bottom left axis)
and viewing angle (bottom right axis) of the training patterns. Each graph shows the
activations of a single unit over the entire set of training patterns. Each gating unit
provided a contextual gating signal to three clustering units (see Figure 4), and learned to
respond to a single face, independent of view.
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Train Test
no context, 4 faces:  Layer 1 | 59.2 (2.4) | 65.0 (3.5)
no context, 10 faces: Layer 1 | 15.0 (0.0) | 12.0 (0.0)
context, 4 faces: Layer 1 | 88.4 (3.9) | 74.5 (4.2)
Layer 2 | 88.8 (4.0) | 72.7 (4.8)
context, 10 faces: Layer 1 | 96.3 (1.2) | 71.0 (3.0)
Layer 2 | 91.8 (2.4) | 70.2 (4.3)

Table 1: Mean percent (and standard error) correctly classified faces, across 10 runs, for
unsupervised clustering networks trained for 2000 iterations with a learning rate of 0.5,
with and without temporal context. Layer 1: clustering units. Layer 2: gating units.

when the weights on the self-pointing connections on the gating units were increased from
1.0 to 3.0, to increase the time constant of temporal averaging, the network performed
extremely well. On average, the top layer units achieved 96% correct classification on the
training set and 70% correct on the test set. In further simulations, reported in Becker
(1997), the generalization performance of the above unsupervised network was shown to
be substantially superior to that of supervised back-propagation networks with similar ar-
chitectures; however, when a temporal smoothness constraint was imposed on the hidden
layer units’ states, even feed-forward back-propagation networks performed as well as our
unsupervised model.

6 Simulations with network 2

The network shown in Figure 4 learned a “grandmother cell” representation, where each
clustering unit learned to specialize for a single face at a particular viewpoint, and each
gating unit therefore responded to a single face over a wide range of viewpoints. Although
“face cells” have indeed been identified now by many labs, e.g. (Gross et al., 1971; Perrett
et al., 1982; Desimone et al., 1984; Yamane et al., 1988; Tanaka et al., 1991) these cells
only rarely exhibit either viewpoint invariance or selectivity for a single individual; the
vast majority of face cells are tuned to one of only four views (front, back, left and right)
and respond roughly equally to the heads of different individuals (Perrett et al., 1992).

There are several reasons why it is unlikely that the brain uses a grandmother cell
representation as a matter of course. For one, it is very expensive with respect to neural
machinery. Further, it does not scale well; each time a new face is encountered, new
representational units would need to be added. Finally, this type of representation exhibits
poor generalization.
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In our second set of simulations, we sought to explore the interaction between the ar-
chitecture and the cost function in constraining the representation learned by the network.
This time, we used the architecture shown in Figure 7. This network differs from the one
used in the fist set of simulations in two important ways, chosen to encourage more dis-
tributed representations of faces. First, the network has fewer modules than the previous
one: only three modules were trained to encode all ten faces. Now, the network must form
a more compact encoding of the face stimuli. Second, there is now only one clustering
unit per module, and there are multiple gating units per module (four per module in the
simulations reported here). Thus, rather than a many-to-one relationship between cluster-
ing and gating units in each model, the relationship is one-to-many. The clustering units
should therefore be encouraged to develop broader tuning curves, and might be expected
to cluster faces based on viewpoint (pose) rather than face identity, given the low pixel
overlap between successive views of the same face. Further, because there are multiple
gating units for each clustering unit, the gating units might be expected to learn a more
distributed representation of faces.

To accommodate the one-to-many relationship between the clustering and gating units,
the cost function was modified so that each clustering unit takes as its gating signal the
average of the activations over the gating units in the same module:

n m N 1 l
L = > log [Z yi( ) i Zgij(a)] (19)
a=1 i=1 j=1

As in the first network, we still have a single mixture of Gaussian submodels, with each
clustering unit corresponding to a submodel. Now, the probability over each submodel, 7,
given the inputs and contexts, is computed by averaging the activations g;; of gating units
within the same module. As before, the gating units received time-delayed, temporally
blurred inputs from the clustering layer. Unlike in the previous simulations, the gating
units also received time-delayed, temporally blurred inputs directly from the input layer.
This extra source of context was provided so that gating units in the same module would
have some basis for developing differential responses.

The clustering units’ connection weights were updated for 2000 iterations with a fixed
learning rate of 0.1 while the gating units’ connection weights were initially held fixed.
Typical response profiles for the clustering units are shown in Figure 8. As predicted,
these units exhibited broad face-tuning but relatively narrow pose-tuning.

The gating units’ connection weights from the input layer were then updated for 2000
further iterations with a fixed learning rate of 0.02. No constraints were placed on these
weights, so they could potentially grow larger than the weights from the clustering to the
gating layer. Networks with different numbers of gating units per module (but always
three or four modules) were experimented with, and produced qualitatively similar results.
The gating units tended to respond to combinations of one or more faces at similar poses.
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However, the responses were not convincingly distributed. Rather, different gating units
became selective for narrow, relatively non-overlapping regions of the face-pose-space. To
further encourage the gating units to develop more distributed responses, the time-delay
and blurring from the direct input connections to the gating layer was removed. Thus, like
the clustering units, the gating units could now access only a single time slice of the input at
a given moment. As predicted, this decreased the tendency for gating units to group faces
of particular individuals over time, resulting in more multi-modal response profiles as in
Figure 9. In this case, gating units in the same module (plotted in the same row in Figure
9) tended to have similar pose-tuning, and multi-modal, somewhat overlapping face-tuning
profiles. This architecture actually violates the conditional independence assumption about
the input and context streams, by using the same signal for both input and context. This
would be of greater concern if the clustering and gating layers were adapted simultaneously,
in which case they could achieve agreement in trivial ways, e.g. by only attending to small
subsets of their inputs. To address this issue of independence, similar results were obtained
in networks in which the clustering and gating layers were randomly connected to the input
layer, which provided an approximation to independence.?

To summarize our second set of simulations, we sought to extend our basic findings
by exploring several variations in the architecture which were predicted to lead to more
distributed representations of faces. In particular, fewer modules were used, and there were
multiple gating units per module. As predicted, the clustering units became less tuned to
individuals’ faces. Instead, they developed pose-tuning and were broadly selective to a wide
range of individuals. It was also predicted that the gating units would form distributed
codes for faces. However, although their tuning curves were multi-modal in face-pose-
space, they were not strongly overlapping, but instead, remained relatively local. This
representation would be good for recognizing general features common to many faces, but
would not be as appropriate for face classification as compared to that learned by the first
architecture.

7 Discussion

The simulation results with our model demonstrate that temporal context can markedly
alter the sort of features or classes learned by an unsupervised network. When combined
with appropriate architectural constraints, a range of representations can be learned. But
does this have anything to say about self-organization in the cortex? In this section, we
consider behavioral and physiological lines of evidence in support of our model. Finally,
several related computational models are considered.

2This approximation is still not exact. A better solution would be to connect the clustering and gating
layers to physically different parts of the input. For example, the gating units could be connected to the
spatial context surrounding the input to the clustering unit(s) in the same module.
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Figure 7: The architecture used in the second set of simulations reported here. The
gating units received normalized, temporally blurred input from clustering units in the
same module and neighboring module(s), and direct connections from the input layer.
The connections from the clustering units to the gating units had fixed weights of 0.6 for
within-module connections, 0.2 for between-module connections to the middle module, and
0.4 for between-module connections to the end modules. The weights on the direct input
connections to the gating layer were fixed at zero while the clustering layer was trained,
and were subsequently adapted during a second training phase.
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Figure 8: Three clustering units’ normalized activations are plotted against face identity
(bottom left axis) and viewing angle (bottom right axis) of patterns. Each graph shows
the activations of a single unit over the entire set of training patterns. Each clustering unit
received contextual input from three gating units (see Figure 5), and learned to respond
to faces from a particular viewpoint, independent of face identity.

Figure 9: Twelve gating units’ activations, before normalization, are plotted against face
identity (bottom left axis) and viewing angle (bottom right axis) of patterns. Each graph
shows the activations of a single unit over the entire set of training patterns. Units in the
same row were trained to provide a common contextual gating signal to a single clustering
unit (see Figure 5). For the most part, each has learned to respond to multiple faces from
a narrow range of views.
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7.1 Empirical evidence for the use of temporal context

As mentioned in the introduction, there is evidence that single cells’ tuning curves exhibit
complex temporal dynamics (Ringach et al., 1997; De Angelis et al., 1995). But are
these effects hard-wired, or might temporal context play a role in the learning of receptive
fields? Physiological evidence from Miyashita (1988) would support the latter contention.
Miyashita repeatedly exposed monkeys to a fixed sequence of 97 randomly generated fractal
images during a visual memory task, and subsequently recorded from cells in the anterior
ventral temporal cortex. Many cells responded to several of the fractal patterns, and the
grouping of patterns was based on temporal contiguity rather than geometric similarity.
This is rather striking evidence for learning based on temporal associations rather than
pattern overlap.

Furthermore, recent behavioral evidence suggests that temporal context is important to
human learning about novel objects. Seergobin, Joordens and Becker (unpublished data)
exposed experimental participants to sequences of images of faces of the same sort used in
the simulations reported here. In one condition, faces were viewed “coherently”, that is, in
ordered sequences from left to right or right to left. In another condition, faces were viewed
“incoherently”, that is, each face was presented in a scrambled sequence with the views
randomly ordered. Participants demonstrated a significant benefit in face-matching from
the more coherent temporal context during study.® Given that there may be differences
in the way humans process faces as compared to other types of objects (Bruce, 1997),
Seergobin et al. extended their results in a further set of experiments using static image
sequences of novel, artificially generated bumpy objects resembling asteroids. In this case,
a similar advantage for coherent temporal context in implicit learning was shown.

7.2 Justification for a modular, hierarchical architecture

The hierarchical, modular architecture shown in Figure 3 is motivated by several features
widely considered to be ubiquitous throughout all regions of the neocortex: a laminar
structure (see e.g. Douglas & Martin, 1990), and a functional organization into “cortical
clusters”. As Calvin (1995, pp. 269) succinctly puts it, “... the bottom layers are like a
subcortical ‘out’ box, the middle layer like an ‘in’ box, and the superficial layers somewhat
like an ‘interoffice’ box connecting the columns and different cortical areas”. We tentatively
suggest a correspondence between the clustering units in our model and layer IV cells,
and between the gating units and the deep and superficial layer cells. With respect to

30ne might then wonder whether fully animated video sequences would confer a further benefit on
object learning, over and above that of temporally coherent sequences of static images. Interestingly, for
the case of animated versus statically studied faces, Bruce and colleagues found no such advantage in two
different experiments (Christie & Bruce, 1998; Bruce & Valentine, 1998). Note, however, that dynamic
viewing at the time of testing does improve face recognition performance (Christie & Bruce, 1998; Bruce
& Valentine, 1998).
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functional modularity, in many regions of cortex, spatially nearby columns tend to cluster
into functional groupings with similar receptive field properties (see e.g. Calvin, 1995),
including visual area V2 (Levitt et al., 1994), and inferotemporal cortex (Tanaka et al.,
1993). We experimented with two different means of inducing functional modularity in our
model: In the first set of simulations, subsets of clustering units shared a common gating
unit, and learned to predict similar regions of the contextual space. Consequently, they
became tuned to temporally coherent features: different views of the same individual’s face.
In the second set of simulations, subsets of gating units shared a common clustering unit,
and learned to detect different contextual features that predicted a common region of the
input space. In this case, different gating units in the same module became specialized for
similar views but different faces. Further, clustering units in nearby modules had partially
overlapping contextual inputs; this resulted in a similarity of function across neighboring
modules: clustering units in adjacent modules were selective for similar views. It remains to
be seen which, if either, of these architectures is a good model of cortical self-organization
and modularity.

Another possibility is that the functionality of an entire module of clustering and gating
units in our model could be computed by a single neuron. The neuron would then require
nonlinear interactions among synaptic inputs, so that the context could act in a modulatory
fashion, rather than as a primary driving stimulus. A number of models of cortical cell
responses have proposed multiplicative interactions between modulatory and primary input
sources (Nowlan & Sejnowski, 1993; Mel, 1994; Mundel et al., 1997; Pouget & Sejnowski,
1997).

7.3 Face processing and shape recognition in the cortex

The model in its present implementation is not meant to be a complete account of the way
humans learn to recognize faces. Viewpoint-invariant recognition is probably achieved,
if at all, in a hierarchical, multi-stage system. In ongoing work, we are exploring this
possibility by training, in series, a sequence of networks like the one shown in Figure 3,
with progressively larger receptive fields at each stage.

Oram and Perrett (1994) have proposed a roughly hierarchical, multi-stage scheme
for decomposing the ventral visual pathway into a functional processing hierarchy. Of
particular relevance to the results reported here is their proposal for the organization of
object recognition in the infero-temporal cortex (IT). A large body of physiological evidence
supports the notion that I'T cells are responsible for complex shape coding. After Tanaka
and colleagues (Tanaka et al., 1991), Oram and Perrett propose that object recognition is
accomplished in a distributed network in IT (particularly area AIT) as follows: each module
or column codes for a particular shape class. A given object activates many modules,
corresponding to different complex visual features. Within a module, different cells exhibit
slightly different selectivities, and can thereby signal more precisely the stimulus features.
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For example, cells in a given column might all code for a pair of small round objects aligned
horizontally. Within a column, different cells might further specialize for a pair of eyes or
a pair of headlights. Responses across many such columns, taken together, could thereby
code a great many different objects uniquely. Only under special circumstances would a
grandmother cell be devoted to recognizing a unique conjunction of stimulus features.

The network shown in Figure 7 learned a representation that is consistent, at least
in broad terms, with the scheme for representing objects proposed by Tanaka et al, and
Oram and Perrett. Units in the same module learned to code for a particular class of
stimuli - faces over some wide range of views. Different gating units in the same module
became further specialized to detect particular features of different faces. These units
were usually not tuned to one specific face, but each tended to respond to several specific
individuals’ faces. A question for future research is whether the model presented here could
encode different uncorrelated features, or different classes of objects, across many different
modules.

7.4 Related work

Phillips, Kay and Smyth (Phillips et al., 1995; Kay & Phillips, 1997) have proposed a
model of cortical self-organization they call coherent Infomax that incorporates contextual
modulation. In their model, the outputs from one processing stream modulate the activity
in another stream, while the mutual information between the two streams is maximized.
They view this algorithm as a compromise between Imax (Becker & Hinton, 1992) and In-
fomax (Linsker, 1988). A number of other unsupervised learning rules have been proposed
based on the assumption of temporally coherent inputs. Becker (1993) and Stone (1996)
proposed learning algorithms that maximize the mutual information in a neuron’s output
at nearby points in time. Foldidk (1991) and Weinshall, Edelman and Biilthoff (Weinshall
et al., 1990; Edelman & Weinshall, 1991) proposed variants of competitive learning that
used blurred outputs and time delays, respectively, to associate items over time. Sev-
eral investigators (Seergobin, 1996; Wallis & Rolls, 1997; Stewart Bartlett & Sejnowski,
1998) have shown that F6ldidk’s model, when applied to faces, develops units with broad
pose-tuning. Temporal smoothing has also been shown to broaden pose-tuning to faces
in feed-forward back-propagation networks (Becker, 1997) and in Hopfield-style attractor
networks (Stewart Bartlett & Sejnowski, 1997). O’Reilly and Johnson (1994) used feed-
back inhibition and excitation to achieve temporal smoothing and pose-invariance in a
multi-layer model that is perhaps most similar to the one proposed here. Their network
used excitatory feedback from the top-layer units to pools of middle-layer units, so that
position-invariance was achieved to progressively greater degrees in higher layers. O’Reilly
and Johnson’s model could be viewed as a more biologically constrained approximation to
the more formal learning model proposed here.

As mentioned earlier, Hidden Markov Models provide another way to implement the
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model proposed here (Geoff Hinton, personal communication). However, current tech-
niques for fitting HMMs are intractable if state dependencies span arbitrarily long time
intervals. Saul and Jordan (1996) have proposed an elegant generalization of HMMs they
call Boltzmann chains, for modelling discrete time series. In one special case, they show
that the learning is tractable for coupled parallel chains, that is, parallel discrete time
series of correlated features, coupled by common hidden variables. This case would corre-
spond exactly to the one assumed here (see Figure 2 c), if the temporal dependencies were
restricted to adjacent points in time.

One limitation of the model proposed here is that it does not provide a complete account
of the role of feedback between cortical layers. Although top-down feedback could be viewed
as just another source of context, and thereby incorporated into the present model, the
solution might not be globally optimal in a multi-stage system. The work of Hinton and
colleagues on the Helmholtz machine (Hinton & Zemel, 1994; Dayan et al., 1995) and Rao
and Ballard’s Extended Kalman Filter model (Rao & Ballard, 1997) provide two different
solutions to this problem.

8 Conclusions

A “contextual input” stream was implemented in the simplest possible way in the simu-
lations reported here, using fixed delay lines and recurrent feedback. However, the model
we have proposed provides for a very general way of incorporating arbitrary contextual
information, and could equally well integrate other sources of input. A wide range of per-
ceptual and cognitive abilities could be modelled by a network that can learn features of
its primary input in particular contexts. These include multi-sensor fusion, feature segre-
gation in object recognition using top-down cues, and semantic disambiguation in natural
language understanding. Finally, our model may be able to account for the interaction
between multiple memory systems in the brain. For example, it is widely believed that
memories are stored rapidly in the hippocampus and related brain structures, and more
gradually stored in the parahippocampal and neocortical areas (McClelland et al., 1995).
The manner in which information is represented in the hippocampal system is undoubtedly
very different from that of the cortex. A major question is how the two systems interact.
The model proposed here may be able to explain how interactions between disparate in-
formation sources such as the hippocampal and cortical codes are integrated into a unified
representation in the cortex. The output of the hippocampus, a rapidly formed novel code,
could be treated simply as another source of context, to be integrated with bottom-up
information received by various cortical areas.
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