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1 INTRODUCTION

In this article, we review three types of neural network learning procedures which can be
considered unsupervised: information-preserving algorithms, density estimation techniques,
and invariance-based learning procedures. This decomposition does not necessarily imply
three strictly non-overlapping classes, but rather it is meant to emphasize the different
underlying principles that motivated each algorithm’s development. We will use the term
unsupervised to refer to those algorithms for which there is no externally derived teaching
signal informing the network as to whether or not it has produced the correct response for
each input pattern. Invariably, though, for each unsupervised learning procedure there is an
implicit internally-derived training signal; this training signal may be based on the network’s
ability to predict its own input, or on some more general measure of the quality of its internal
representation.

1.1 Global objective functions or synaptic learning rules?

Since our concern is with unsupervised learning in networks and their global behaviour, we
will focus on algorithms based upon globally-defined objective functions, rather than synaptic
learning rules. By performing gradient descent in a global objective function we can reduce a
global algorithm into synaptic-level steps (weight changes), but the converse is not necessarily
true; i.e., a given synaptic learning rule may not correspond to the derivative of any global
objective function. There are many advantages afforded by the “global approach”. It allows
us to understand the operation of the network in an information-processing sense, i.e., in
terms of what sort of transformation the network applies to the input; such an understanding
can be elusive if we begin with a synaptic learning rule and then try to predict its global
behavior. The global approach also adheres to the principles of good algorithm design
well-known to the computer scientist: we start with a conceptual specification of what the
learning is meant to accomplish; this is translated into a computational specification - the
objective function, which is then refined into detailed computational steps - the synaptic
learning rules. This top-down approach allows us to explore different implementations of the
same learning algorithm, such as batch versus online versions. Finally, the global objective
function provides a quantitative measure of the success of the learning procedure, and we
can (usually) detect its convergence.

In contrast to this top-down approach, the earliest computational models of learning were
based on Hebb’s synaptic learning principle; Hebb postulated that synaptic efficacy should
increase whenever two pre- and post-synaptic neurons are co-active. Many computational
models have built upon this principle (see HEBBIAN RULES AND TENSOR PRODUCTS).
It has also gained popularity among neurobiologists as a plausible candidate for a cortical
synaptic learning mechanism. It is therefore of interest to computational modellers to try
to translate their global learning procedures into local, biologically plausible learning rules
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such as Hebbian learning.

1.2 Self-organization in perceptual systems

One of the major motivations for studying unsupervised learning is to discover the gen-
eral computational principles underlying brain self-organization. KEvidence of experience-
dependent plasticity has been reported in a wide variety of brain areas. Perhaps the most
startling evidence comes from a series of studies by Sur and colleagues (reviewed in Sur,
1989), who found that by artificially rerouting primary visual cortical input pathways to the
auditory cortex in ferrets, the “auditory” cortical cells develop responses to visual stimuli,
and exhibit typical visual cortical receptive fields. According to Asanuma (1991, pp. 217),
“... the long-held belief that the cortical representation of the sensory periphery is hard
wired in adults has become less and less tenable.” It seems that the brain has a dynamic
restructuring capacity which is not only restricted to primary sensory areas, and may be a
ubiquitous property of the adult neocortex (Asanuma, 1991). This possibility raises a num-
ber of questions: Are there any general, unsupervised organizing principles which predict
cortical reorganization, and can they be expressed computationally, as global objective func-
tions for learning? Is more than one such principle required? What architectural constraints
are necessary for successful learning, and how do they interact with the choice of objective
function? It is these sorts of questions that unsupervised learning research is concerned with.

2 INFORMATION-PRESERVING ALGORITHMS

Since there is no external teaching signal for unsupervised learning, the goal of the learning
must be stated solely in terms of some transformation on the input which will preserve the
interesting structure. The first task then is to define what constitutes interesting structure.
The most general possible goal is to try to preserve all of the information by simply memo-
rizing the input patterns. Pattern-associators (see ASSOCIATIVE MEMORY) can be used
as such by operating in auto-associative mode, i.e., by storing each input pattern associated
with itself. All of these models suffer capacity limitations: only a limited number of patterns
can be stored and perfectly recalled by a network of fixed size.

2.1 Minimizing reconstruction error

Given the limited ability of networks to store a set of patterns exactly, a better strategy
might be to try to find a compressed representation of the patterns. This may be helpful for
preprocessing noisy data, and for modelling early stages of perceptual processing. A stan-
dard data compression technique is principal components analysis (PCA) (see PRINCIPAL
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COMPONENTS ANALYSIS). Several learning procedures (reviewed in Becker and Plumb-
ley, 1994) have been developed which converge to the first NV principal directions of the input
distribution. These methods are optimal with respect to minimizing the mean squared re-
construction error for linear networks. However, there is no guarantee that a linear method
like PCA will capture the interesting structure in arbitrary input distributions.

A more general method for finding a compressed representation that minimizes recon-
struction error is to use a nonlinear back-propagation network as an auto-encoder (Hinton,
1989), by making the desired states of the N output units identical to the states of the
N input units on each case. Data compression can be achieved by making the number of
hidden units M < N. Further, the features discovered by the hidden units may be useful
for subsequent stages of processing such as classification. However, with complicated input
patterns containing multiple features, it may not be possible to relate the activities of indi-
vidual hidden units to specific features. One way to constrain the hidden unit representation
is to add extra penalty terms to the objective function. For example, Saund (1989) added a
constraint that caused hidden units to represent high-dimensional data as single points on
a lower-dimensional constraint surface, by penalizing activation patterns that deviated from
unimodal distributions. This encourages units to represent a single scalar dimension that
best characterizes the input. Zemel and Hinton (see MINIMUM DESCRIPTION LENGTH
APPLICATIONS OF NEURAL NETWORKS) generalized this idea by imposing an MDL-
based penalty term on hidden unit activities.

2.2 Direct minimization of information loss

Another approach to ensuring that the important information in the input is preserved in
the output is to use concepts from information theory. Many learning procedures have been
proposed which minimize the information loss in a network, subject to processing constraints
(reviewed in Becker and Plumbley, 1994). The common feature of these methods is the
preservation of mutual information (Shannon, 1948) between the input vector x and output
vector y:

where H(x) = — [, p(x)logp(x)dx is the entropy of random variable z with probability
distribution p(z), and H(x | y) = — [xyp(X,¥)logp(x | y)dx dy is the entropy of the

conditional distribution of x given y. This measure tells us the amount of information
(uncertainty) in x less the uncertainty remaining in x when y is known. Thus, I, is high
when x is difficult to predict a prior:, and becomes much easier to predict after being told
y-

If the network is free of processing noise and has enough units, its output layer can
convey all the information contained in the input simply by copying the input. Linsker
(1988) proposed applying the “Infomax principle” in the presence of Gaussian processing
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noise at the output layer for linear networks; when the input distribution is Gaussian, the

information is:
I =0.5log Q"
V(n)

where |QY| is the determinant of the covariance matrix of the output vector y (the signal
plus noise) and V' (n) is the noise variance. Maximizing this quantity results in a tradeoff
between maximizing the variances of the outputs, and decorrelating them, depending on the
noise level. For a single output unit, this leads to a simple Hebb-like learning rule.

An alternative optimality criterion proposed by Barlow (1989) is to find a minimally re-
dundant encoding of the sensory input vector into an n-element feature vector, which should
facilitate subsequent learning. If the n features are statistically independent, then the for-
mation of new associations with some event V' (assuming the features are also approximately
independent conditioned on V') only requires knowledge of the conditional probabilities of
V given each feature y;, rather than complete knowledge of the probabilities of events given
each of the 2™ possible sensory inputs. Barlow proposes that one could achieve featural
independence by finding a minimum entropy encoding: an invertible code which minimizes
the sum of the feature entropies.

Several approximate solutions to Barlow’s model in the linear case are reviewed by Becker
(1991). The nonlinear case is of course much more difficult to learn, requiring a much stronger
result of statistically independent, rather than just decorrelated, outputs. In general this
is an intractable problem; that is, to verify the statistical independence of n items requires
the enumeration of on the order of n" statistics. Thus, tractable approximations to this
objective function are needed.

3 DENSITY ESTIMATION TECHNIQUES

Rather than trying to retain all the information in the input, we could try to characterize
its underlying probability distribution by developing a more abstract representation. Many
standard statistical methods fall under the category of density estimation techniques (for a
good introduction, see Silverman, 1986), and several unsupervised learning procedures can
be viewed in this way. The general approach is to assume a prior: a class of models which
constrains the general form of the probability density function; then search for the particular
model parameters defining the density function most likely to have generated the observed
data. This can be cast as an unsupervised learning problem by treating the network weights
as the model parameters, and the overall function computed by the network as being directly
related to the density function.
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3.1 Mixture models and competitive learning

One possible choice of prior model is a mixture of Gaussians. The prior assumption in this
case is that each data point was actually generated by one of n Gaussians having different
means ;, variances o;2, and prior probabilities m;. Fixing the model parameters j;, 0;, and
m;, we can compute the probability of a given data point x under a mixture-of-Gaussians
model as follows:

n

p(x | {ui}y o} Am}) = DY mPix, s, 04) (2)

1=1

where P;(xX, 13, 0;) is the probability of x under the ith Gaussian. Applying Bayes’ rule, we
can also compute the probability that any one of the Gaussians generated the data point x:

U PZ(X) Hi, Ui)

p(i [ %} Ao {m}) = =

T Pi(x, g, 05)

(3)

Given these probabilities, we can now use as a cost function the log likelihood of the data
given the model: log(L) = >, log(p(x | {wi},{o:},{m})) By maximizing this function,
we can approximate the true probability distribution of the data, given our prior model
assumptions. Note that by taking the log of L, we obtain a cost function which is a sum
(rather than a product) of probabilities for each input pattern. The model parameters can
then be adapted by performing gradient ascent in log(L). The EM algorithm (Dempster
et al., 1977) alternatingly applies equation 2 (the Expectation step) and adapts the model
parameters (the Maximization step) to converge on the maximum likelihood mixture model
of the data.

Competitive learning procedures (see FEATURE DISCOVERY BY COMPETITIVE
LEARNING) perform a discrete approximation to density estimation. The general idea
is that units compete to respond (e.g. by a winner-take-all activation function or lateral
inhibition), so that only the winning unit in each competitive cluster is active. Only this
unit learns on each case, by moving its weight vector closer to the current input pattern.
Hence, each unit minimizes the squared distance between its weight vector and the patterns
nearest to it, as in standard k-means clustering. This version of competitive learning is
closely related to fitting a mixture of Gaussians model with equal priors m; and equal fixed
variances 0;2. Using the EM algorithm, every unit (not just the winner) moves its mean
closer to the current input vector, in proportion to the probability that it’s Gaussian model
accounts for the current input (equation 3). Competitive learning approximates this step by
making a binary decision as to which unit accounts for the input. Thus, the same learning
rule applies, except that the proportional weighting is replaced by an all-or-none decision.

Nowlan (1991) proposed a “soft competitive learning” model for neural networks. Rather
than only allowing the winner to adapt, each unit adapts its weights for every input case,
in proportion to how strongly it responds on a given case. This is an online version of the
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EM algorithm for Gaussian densities with equal priors, and adaptive means and variances.
Nowlan found this method to be superior to the traditional “hard competitive learning
models” on several classification tasks.

3.2 Combinatorial representations

A major limitation of mixture models and competitive learning is that they employ a 1-of-n
encoding, in which a single unit or model is assumed to have generated the data. A multiple
causes model is more appropriate when the most compact data description consists of several
independent parameters (e.g. color, shape, size). Several examples of this approach are re-
viewed in (Becker and Plumbley, 1994). For example, Neal’s (1992) multilayer “connectionist
belief networks” resemble stochastic Boltzmann machines (see BOLTZMANN MACHINES),
but they are strictly feedforward. Output states are clamped to patterns selected from the
environment, while the hidden unit state space is randomly explored. The weights are ad-
justed so as to increase the probability of the hidden units generating the clamped output
patterns. The network thereby learns to represent features in the hidden layer which explain
correlations in the pattern set.

4 INVARIANCE-BASED LEARNING

The methods discussed so far try to extract useful structure from raw data, assuming mini-
mal prior knowledge. How can unsupervised learning be applied beyond these preprocessing
stages, to extract higher order features and build more abstract representations? One ap-
proach is to restrict our search to particular kinds of structure. We can make constraining
assumptions about the structure we are looking for, and build these constraints into the net-
work’s architecture and/or objective function to develop more efficient, specialized learning
procedures.

4.1 Spatially and temporally coherent features

Becker and Hinton’s (1992) Imax learning procedure discovers properties of the input that are
coherent across space and time, by maximizing the mutual information between the outputs,
Yo, and 1, of network modules that receive input from different parts of the sensory input
(e.g. different modalities, or different spatial or temporal samples). Note how this objective
function differs from the Infomax principle; the latter tries to retain all of the information
in the input by maximizing the mutual information between inputs and outputs, whereas
Imax tries to extract only those features common to two or more distinct parts of the input.

Under Gaussian assumptions about the signal and noise, Becker and Hinton derived the
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following objective function for the learning:

V(ya + yb)
I=05log—22 "
V(ya - yb)

This measure tells how much information the average of y, and ¥, conveys about the common
underlying signal, i.e., the feature which is coherent across the two input samples. When
applied to networks composed of multi-layer modules that receive input from adjacent, non-
overlapping regions of the input, Imax discovered higher order image features (i.e., features
not learnable by single-layer or linear networks) such as stereo disparity in random dot
stereograms. One way to apply Imax to more than two modules is to have each module make
a prediction about a linear combination of several neighboring modules’ outputs. Becker and
Hinton showed that a layer of linear units can thereby interpolate surface depth by learning
to optimally combine local depth measurements. Note that Imax requires back-propagation
of derivatives to train the weights to the hidden units, and the storage of several statistics on
each link to compute the mutual information derivatives. Thus, a more biologically plausible
approximation is needed.

5 DISCUSSION

We have argued in favor of the “global objective function” approach to modelling unsuper-
vised learning processes, and explored several powerful learning procedures based on this
approach. These methods have had success in modelling early perceptual processing. With
the incorporation of highly constraining prior models, unsupervised learning procedures can
form even more abstract representations of data, and extract higher-order features. A major
direction for future research is to find tractable instantiations of these learning procedures,
and to apply them in multiple learning stages to form a diversity of representational levels.
Additionally, in order to remain within the realm of biological plausibility, many of these
learning models must be extended to yield simple, local synaptic learning rules.
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