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Abstract

Semantic priming is traditionally viewed as an effect that rapidly decays. A new view of
long-term word priming in attractor neural networks is proposed. The model predicts long-
term semantic priming under certain conditions. That is, the task must engage semantic level
processing to a sufficient degree. These predictions were confirmed in computer simulations
and in 3 experiments. Experiment 1 showed that when target words are each preceded by
multiple semantically-related primes, there is long-lag priming on a semantic decision task
but not on a lexical decision task. Experiment 2 replicated the long-term semantic priming
effect for semantic decisions using only one prime per target. Experiment 3 demonstrated
semantic priming using much longer word lists at lags of 0, 4, and 8 items. These are the
first experiments to demonstrate a semantic priming effect spanning many intervening items
and lasting much longer than a few seconds.



Long-term semantic priming:
A computational account and Empirical evidence

Many forms of priming have been studied (for reviews, see Monsell, 1985; Schacter, 1987;
Richardson-Klavehn & Bjork, 1988). Whereas in repetition priming the priming stimulus is
identical to the target, in similarity-based priming tests, e.g. form-priming, morphological
priming and semantic priming, the prime and target are different words sharing some surface
and/or semantic features. Repetition priming and form-priming have been found to produce
long-lasting effects ranging from hours to weeks or even months (e.g., Jacoby & Dallas, 1981;
Sloman et al., 1988; Bentin & Moscovitch, 1988; Rueckl, 1990; Bentin & Feldman, 1990).
Semantic priming, however, is traditionally thought to produce only short-term effects that
dissipate after several seconds or after more than one item intervenes between prime and
target stimuli.

Is it possible that completely different priming mechanisms are operating at semantic
levels of processing as compared with other levels at which priming could occur? The most
parsimonious account would be that the same mechanisms operate at all levels of the sys-
tem. In this article, we are concerned particularly with long-term priming, and argue in
favor of a single mechanism to account for all types of long-term priming. Our view is
that short-term semantic priming involves a process completely different from that under-
lying long-term priming, but either type of process should behave according to the same
computational principles at any level of the system, whether it be perceptual or semantic.
Although our account of long-term priming is very general, our focus is specifically on se-
mantic priming because our model makes novel predictions in this domain. We first present a
theoretical account of long-term priming based on a distributed connectionist model of word
recognition, combined with some very general learning/processing assumptions. The theory
specifies conditions under which long-term priming should occur, and predicts that semantic
priming should produce long-term effects under the appropriate conditions (even though it
has not been found in the literature to date). We use a combination of connectionist mod-
elling and experimental techniques to test our computational account of long-term priming.
Whereas computational models have been used most often in the literature to account for
data after the fact, our theoretical account has been used to generate predictions and guide
our experimental investigations. Our modelling approach is also novel in that we take into
account task-specific differences that we predict will explain the failure of previous studies to
find long-term semantic priming. Both computer simulations and experiments with human
participants are shown to confirm our predictions.

We now review the different forms of long-term priming that have been studied in the
literature, and summarize the major theoretical accounts that have been proposed. We then
present our computational account of long-term priming, and explain why the model predicts
that it should be possible to produce long-term semantic priming.



Repetition priming

Repetition priming is observed when participants are more accurate or efficient in responding
to previously studied (primed) targets than to new (unprimed) targets. The term implicit
memory was coined by Graf & Schacter (1985; Schacter, 1987) to refer to the sort of un-
conscious memory measured on priming tasks. One of the earliest accounts of long-term
repetition priming was based on Morton’s (1969) logogen model of word recognition. Mor-
ton proposed that long-term priming is the result of a word-detector unit’s threshold being
lowered as a result of previous supra-threshold activation of that word unit. Bavelier &
Jordan (1993) proposed a similar account of long-term repetition priming, in a multi-layered
connectionist model. McClelland & Rumelhart (1986) proposed an alternative mechanism
for long-term repetition priming in neural networks with recurrent connections, which we
adopt in our model. They postulated that exposure to each pattern involves some incre-
mental learning. See also Bower (1996) for a similar account. We refer to this postulate as
the “incremental learning hypothesis”. It predicts that all of the connections in the network
that are involved in processing a pattern, not just the thresholds of units, should undergo
some incremental learning as a result of priming. In McClelland and Rumelhart’s model,
each learning step involves a large initial change in each weight, which rapidly decays down
to a permanent or very slowly decaying smaller change. Thus, priming is thought to reflect
the normal course of learning. When a network is exposed to a previously primed pattern, it
should settle to a stable response more quickly because the connections involved in producing
the response have been reinforced.

Similarity-based Priming

The threshold lowering and incremental learning hypotheses both can account for long-term
repetition priming, in which responses to the same input pattern are faster or more accurate
upon repeated presentations. However, when the prime and target stimuli are not identical
but related, the threshold account predicts no long-term effect. The incremental learning
account makes no specific prediction about how long-term priming would depend on the
level of similarity between primes and targets, although McClelland & Rumelhart (1986)
did make the general argument that long-term priming should generalize from primes to
similar targets on the basis of the amount of overlap in their representations. For example,
in form-based priming (Forster, 1987), the prime and target are similar in that they share
perceptual features but are otherwise unrelated, whereas in semantic priming the prime and
target are semantically similar or are semantic- or contextual-associates. Any theory capable
of making specific predictions about these cases must make stronger assumptions about the
nature of the representation and/or processing of stimuli.

Most of the experimental work on form-based priming has examined short-term effects,
as first reported by Meyer, Schvaneveldt and Ruddy (1974), who found faster lexical deci-
sion for words preceded by orthographically and phonologically similar words. In contrast,
long-term similarity-based priming has been much less studied. Bentin & Feldman (1990)
reported that Hebrew words based on a common morphological root, i.e., the same conso-



nant pattern, produced a priming effect on lexical decision that was still significant with
15 intervening items between the prime and target. This was true regardless of whether
or not the words were semantically-associated. When words were semantically- and not
morphologically-related, the priming effect fully dissipated after a lag of 15 items. Rueckl
(1990) has reported consistent long-term priming effects in tachistoscopic word recognition,
when each word was primed by a large set of orthographically similar words. Studies by
Rueckl & Olds (1993) and Feustel et al. (1983) provide converging evidence for these results.
Rueckl interpreted the results of his 1990 studies using McClelland & Rumelhart’s incremen-
tal learning hypothesis, combined with an assumption about the distributed nature of word
representations. It was predicted that the amount of form-priming should increase with the
similarity between prime and target. Assuming an orthographic representation of words in
which activity was distributed across many units, he reasoned that orthographically similar
words would activate many features in common, and therefore would benefit mutually from
the strengthening of connections between those features. Note that Rueckl’s (1990) findings
cannot be explained adequately by theories that postulate long-term threshold changes in
word-detector units; these “localist” theories would not predict such effects to generalize to
visually similar words.

Whereas repetition- and form-priming effects may be very long-lasting, semantic priming
(Meyer & Schvaneveldt, 1971) on implicit memory tests such as lexical decision and naming
has been found to disappear when the prime and target are separated by several intervening
items or time lags of more than several seconds (e.g. Bentin & Feldman, 1990; Dannenbring
& Briand, 1982; Henderson et al., 1984; McNamara, 1992b; Monsell, 1985; Ratcliff et al.,
1985). Studies of semantic priming across a lag of a single intervening item (reviewed in
Joordens & Besner, 1992; Masson, 1995) have yielded mixed results; Joordens & Besner
(1992) have shown a very small but reliable semantic priming effect in the lexical decision
task across a lag of a single item, even when the possibility of conscious comparison of primes
and targets is minimized. Nevertheless, the above literature would suggest that semantic
priming has little or no effect beyond the immediate semantic context.

We now describe our view of long-term priming in connectionist networks, which pre-
dicts that a long-term semantic priming effect should also be possible. To anticipate, we
propose that long-term semantic priming involves incremental learning in semantic networks
rather than a process such as residual activation that mediates short-term effects. Thus our
proposed model of long-term semantic priming is not meant, for the moment at least, to
rival models that seek to account for short-term priming. Though fundamentally different
from each other, the processes underlying short- and long-term semantic priming are seen as
complementary. One is likely crucial for supporting the type of rapid, but transient, anticipa-
tions necessary for efficient discourse and reading whereas the other reflects and contributes
to the construction of long-lasting semantic networks. As a result, the type of test that
best reveals long-term semantic priming will be different from the one that is sensitive to
short-term priming. The overwhelming majority of short-term priming tests have focussed
on the lexical level whereas for long-term priming to be revealed, the tests need to access the
semantic level to a greater degree. These issues are addressed at greater length in presenting



our model and the experiments that support it.

Word recognition in attractor networks

To account for differences in similarity priming when the primes are visually- versus semantically-
related within a computational framework, we begin by describing a connectionist model of
word recognition which involves multiple levels of processing. This model was originally pro-
posed by Hinton & Shallice (1991) to account for symptoms of reading impairment such as
those seen in people with deep dyslexia. The network was trained with an iterative version of
the back-propagation learning procedure (Rumelhart et al., 1986) to map orthographic rep-
resentations of words onto distributed semantic representations via a layer of hidden units,
with the help of semantic “cleanup units” - an extra hidden layer only connected to the
semantic units. There were feed-forward connections from orthographic to hidden units, and
reciprocal connections between the hidden and semantic units, the cleanup and semantic
units, as well as within the semantic layer.

Using this architecture, Hinton & Shallice proposed a novel view of the mechanism un-
derlying word recognition: when a word is presented to the network as an orthographic input
pattern, the rest of the network, including the semantic and hidden layers, gradually settles
into a stable representation called an attractor state. Recognition occurs when it reaches the
correct attractor. The current state vector of the input units can be thought of as repre-
senting a single point in a high-dimensional orthographic space, with dimensionality equal
to the number of orthographic input units. Likewise, the current state vector of the seman-
tic units can be thought of as a single point in semantic space, with dimensionality equal
to the number of semantic units. Because there is no systematic correspondence between
orthographic and semantic features, the network must learn to map points that may be
nearby in the orthographic state space onto much more distant points in the semantic state
space. In contrast, semantically-related words are typically represented by distant points in
orthographic space, but nearby points in semantic space because they share many semantic
features. When the network is damaged by removing connections or adding noise to the
weights, the reading pattern associated with deep dyslexia is observed: not only are visually
similar words (e.g. CAT and MAT) occasionally confused, but substitution errors involv-
ing semantically-related words are also observed (e.g. CAT read as DOG), as are mixed
visual-semantic errors (e.g. CAT read as RAT).

Long-term semantic priming in attractor networks

Adopting the Hinton-Shallice view of word recognition leads us to conceptualize the process
of long-term priming rather differently. When a word is presented to the network and its
semantic representation is activated, assuming Rumelhart & McClelland’s view of long-term
priming is correct, all the connections participating in the entire activated pathway of units
should be altered. These weight changes should increase the probability that the network
will produce the same response when given the same input pattern in the future, even if



the pattern is noisy or incomplete, and should make the same units even more strongly
active the next time (if they are not already at their maximum activation levels). Thus,
the attractor for this particular input pattern will be deepened.! Because the shape of the
attractor basin has now been altered, the network’s responses to other patterns should also
be affected. Small perturbations in the state of the network in the vicinity of this attractor
should be pulled more strongly back to the attractor state. Semantically-related words might
therefore be expected to benefit from their nearby neighbor having been primed, because their
attractors would overlap in many dimensions. Priming with multiple semantically similar
primes should produce an even larger effect than single-word semantic priming. Balota &
Paul (1996) found empirical support for this prediction in the context of short-term priming:
two primes produced more priming than one prime. The computational reason for this
prediction in the case of long-term priming is that the semantic attractors for the primes
would be deepened preferentially along those dimensions common to many elements of the
prime set, and common to the target as well. On the other hand, those dimensions of the
attractor basins for the primes which were not shared by the target would be relatively
unaffected.

To make the above predictions more concrete, if we could measure at the semantic level
the settling time of the network, we would expect to see long-term semantic priming. How-
ever, because semantically-related words normally are far apart in the orthographic space, a
semantic prime would not be expected to influence settling time to the same degree at the
orthographic level. Similar predictions could be made regarding human participants: when
primed with a word having similar semantics to the target, participants should be faster on
a semantic retrieval task such as semantic classification. On tasks such as lexical decision
or word identification that depend less directly on semantics, however, there should not be
strong evidence of semantic priming.

Why have previous experiments failed to show long-term semantic priming? Our pre-
dictions suggest that the following two variables are critical: 1) the task, and in particular,
the level of processing in which the participant engages when responding to both prime and
target words, and 2) the degree of semantic overlap, or number of shared features between
the primes and targets. To our knowledge, with the exception of Woltz’s work (Woltz, 1990;
Woltz, 1996, see General Discussion), all of the previous attempts to study the time-course
of semantic priming have used word recognition tasks such as lexical decision rather than
explicitly semantic tasks such as animacy or size decisions. Our prediction is that the se-
mantic priming effect occurs by deepening attractors in semantic space for both primes and
related targets, and that this effect should primarily manifest itself on semantic retrieval
tasks. Further, a close match between the type of processing involved during presentation of
the prime and target should also be critical. This last point has been demonstrated previ-
ously in a series of priming experiments by Vriezen, Moscovitch & Bellos (1995). Except for

!Plaut & Shallice (1993b) have proposed a similar scheme to account for perseverative naming in optic
aphasic patients, which they describe as being analogous to a temporary priming effect. They implemented
this priming effect using a separate set of fast-decaying weights to store short-term correlations between
units’ activities across recently presented patterns.



one experiment, these studies assessed repetition priming in a semantic classification task.
Vriezen et al. found that when lexical decision or naming on the priming word list was
followed by a semantic decision (e.g. of size or animacy) on the target word list, there was
no priming effect. Only when the task performed on the priming list tapped into the same
level of processing (or higher), as compared with the task performed on the target list, did
priming occur, although the tasks did not have to be identical.

Our second prediction is that the degree of semantic overlap should also be a critical vari-
able. Only when the prime and target have sufficiently overlapping basins of attraction in
semantic space would we predict long-term semantic priming. Thus, words which are highly
associated on the basis of free-association norms but are not particularly similar in mean-
ing, such as BREAD and BUTTER, would not be expected to produce long-term priming.
This prediction makes intuitive sense when priming is viewed as a reflection of incremental
learning. We would like representations in memory to reflect our recent experiences, and
for learning to generalize to items which have overlapping meanings; however, more distant
associations such as BREAD-BUTTER might be modelled better by some alternate learning
mechanism.

The following simulations and experiments were carried out to test our predictions about
long-term semantic priming. Simulation 1 involved semantic priming in a neural network
using blocked priming trials, with priming blocks consisting of multiple semantic primes per
target. Settling time was the dependent measure. Simulation 2 involved a similar testing
procedure, but with only a single related semantic prime per target word. Our previous
simulations (Becker et al., 1993) investigated repetition priming, form priming and semantic
priming using single-word priming trials, and found an interaction between the prime type
(orthographic versus semantic), and the level of processing during the test (orthographic
versus semantic layer settling time). We designed the current simulations to replicate our
previous results on semantic priming. However, we modified our procedure in two substantial
ways to simulate more realistically a long-term priming procedure that could be applied
to human participants: First, rather than presenting a single related prime immediately
preceding each target, we switched to a blocked priming procedure; in each block of trials,
several related and unrelated primes were presented, followed by a target word. This is a
more realistic simulation of long-term priming, because there are multiple intervening items
between a related prime and target. Second, we switched the semantic task from semantic
layer settling time to a more specific animacy decision task that could be performed by human
participants. In the model, we simulated the animacy decision by measuring the settling
time of the unit in the semantic layer representing the animacy feature. In Experiment 1,
we measured long-term semantic priming in participants using blocked priming trials on a
semantic decision (animacy) versus a lexical decision task with multiple semantic primes
for each target, as in Simulation 1. In Experiment 2, we further investigated the semantic
priming effect by using the same experimental setup and target words, but only a single word
prime per target as in Simulation 2. Experiment 3 was conducted to determine whether long-
term priming could be sustained over much longer lists and to explore its decay function by
varying the lag between the prime and target.



Simulation 1

We used a network that we had first trained to perform visual word recognition by producing
the correct semantic and phonological representations in response to an input orthographic
representation. The phonological layer was not needed for the present simulations, but was
included in the network for use in other simulations. The network was tested on a series of
priming trials, on orthographic and semantic decision tasks.

Method

The network architecture: The network used in our simulations is shown in Figure 1. It is
similar to Hinton & Shallice’s network (described above), except that we used a Determinis-
tic Boltzmann Machine (DBM) (Peterson & Anderson, 1987) rather than a back-propagation
network. We chose the DBM network because it is trained using a simple contrastive Heb-
bian learning rule (see Appendix A), thought to be more biologically plausible than back-
propagation networks. Plaut & Shallice (1993a) showed that a DBM network very similar
to ours could produce qualitatively similar behaviour to Hinton and Shallice’s network. Our
network consisted of orthographic, semantic, and phonological (O, S and P) layers, a hidden
layer between the O and S units, and a hidden layer between the S and P units, as shown
in Figure 1. The P layer was not relevant to the simulations reported here. As in all DBM
networks, all connections were bi-directional. The feedback connections greatly increase the
settling time of the network, particularly because the network must be simulated on a serial
machine. In order to minimize the number of connections in our network, we only included
within-layer or auto-associative connections in the O, S and P layers which were involved
in generating responses. It was thought that such connections would enhance within-layer
priming effects.

Although our network differs from the Hinton-Shallice architecture in that it lacks the
extra hidden layer of semantic “cleanup units”, the bi-directional links add enough extra
connections to make the cleanup layer unnecessary. Further, the S — P route may provide
additional cleanup. Our network architecture was virtually identical to that used by Plaut
and Shallice (1993a, Figure 12) except that each unit in our O and P layers also had a link
to itself, and each O layer unit had an external input connection. These two modifications
permitted us to measure settling time in the O layer.

‘ Insert Figure 1 about here

The unit activations:: In order to be able to study the network’s orthographic settling
time, we used a slightly different mode of pattern presentation from the standard DBM
during the latter stages of training and in the priming simulations. In the standard DBM,
an input pattern is presented to the network by fixing the states of the input units to the
pattern values and not allowing these states to update. This method of pattern presentation




at the input layer is sometimes referred to as “hard-clamping”, and means that settling time
cannot be measured at the input layer. We therefore used a “soft-clamping procedure” for
the orthographic layer input units, which allowed the orthographic layer to settle along with
the rest of the network. In our soft-clamping procedure, orthographic units’ states were
strongly influenced by their external input but were also subject to top-down influences.
Further details on the unit activations and training procedure are provided in Appendix A.

The training procedure: DBM learning (Peterson & Anderson, 1987) is appealing be-
cause it is based on a simple Hebb-like learning rule. Hebb (1949) postulated that the
strength of the connection between two neurons should increase whenever those neurons
are simultaneously active. DBM learning is more general in that connection strengths are
adjusted in proportion to the product of the pre- and post-synaptic activities,? and can
therefore either increase or decrease. Learning in a DBM proceeds in two phases, applied
alternatingly for each training pattern: 1) a positive phase in which the input and output
units are clamped to their correct states and positive Hebbian learning occurs, and 2) a
negative phase, in which only the input units are clamped, and negative Hebbian learning
or “unlearning” occurs. See Appendix A for further details.

The network was trained for 3500 sweeps through the training set of 40 patterns until
the network learned to produce the correct semantic and phonological representations in
response to each orthographic input pattern. No priming effects were simulated during the
training phase. Units’ states were considered correct once they were within 0.3 of their target
states.

Materials: The training set consisted of the same 40 words’ orthographic input and
semantic output vectors used by Hinton & Shallice (1991), shown in Appendix B, augmented
by the phonological output vectors used by Plaut & Shallice (1993a). The words were
composed of only the letters {b, ¢, d, g, h, I, m, n, p, r, t} in the first position, {a, e, i, 0, u}
in the second position, {b, ¢, d, g, k, m, n, p, r, t, w} in the third position, and {e, k, -} in
the fourth position, where - denotes a blank. Thus, there was one orthographic input unit for
each letter-position combination. Similarly, Plaut & Shallice’s (1993a) phonological output
representation consisted of 33 position-specific phonemic features: {/b/, /k/, /d/, /dy/,
/i 19/ I/ Sy /m/s /s e/ /s /t/} in the first position, {/a/, /e/, /i/, o/, /u/,
Jie/, Jew/, Jar/, /aw/, /ow/, /oa/} in the second position, and {/b/, /d/, /q/, /k/, /n/,

/m/, /t/, -} in the third position. Words were grouped into five categories: indoor objects,
animals, body parts, foods and outdoor objects. The Hinton-Shallice semantic features were
chosen so that words in the same category had a much higher degree of semantic overlap
(80.5 percent on average) than words in different categories (66.2 percent on average).
Procedure: The priming condition for each target word was either unrelated or related,
and the dependent measures were orthographic-level and semantic-level settling times. The
unrelated primes condition served as a baseline. The network was tested on blocks of 11
words. Each block consisted of a priming list of ten words, followed by a single target
word. Each prime list was constructed so that either half the words in the list were related

2The terms pre- and post-synaptic, borrowed from neurobiology, are standard in the connectionist mod-
elling literature. They refer respectively to the units at the sending and receiving ends of a connection.



to the target (the related primes condition), or all ten words were unrelated to the target
(the unrelated primes condition). The words in each block were randomly chosen without
replacement as follows: In the related primes condition, the five related words were drawn
from the same category as the target word but excluding the target word, and the five
unrelated words were drawn from one other randomly chosen category excluding the target
category. In the unrelated primes condition, two categories were selected at random, without
replacement, excluding the target category; five words were then randomly selected from
each of the two categories. The priming words were presented in a random order, with the
constraint that the last three prime words must be unrelated to the target.

Priming was simulated as an incremental learning mechanism (McClelland & Rumelhart,
1986). For each prime word in a block, the weights in the network were updated according
to the DBM contrastive Hebbian learning rule (see Appendix A), using a fixed learning rate
of 0.0002. Once all the prime words in a block had been presented, the network was then
presented with a target word, and again permitted to settle. To keep the number of free
parameters in the model to a minimum, no decay in the learning was simulated. However,
to obtain a more realistic model we would obviously need to address this issue.

Each target word was tested for twenty successive blocks in each of the two priming
conditions (unrelated and related primes), with the particular primes selected randomly
with replacement in each block. To prevent identity priming effects when the same target
words were re-tested in different blocks, we reset the weights in the network after each block.
Each time a target word was presented, a small amount of noise with mean 0.0 and standard
deviation 0.05 was added to the input (orthographic) units’ states, as during training. This
repeated testing of each word was done in order to generate a distribution of independent
responses to each target word which could be statistically analyzed.

We used two response measures on each trial, orthographic layer settling time and seman-
tic (animacy) decision time. The orthographic settling time was assumed to be analogous
to lexical decision time. The semantic decision was whether a given word represented an
animate or inanimate object. In our network, as in the Hinton-Shallice model, the semantic
representation included a single unit designated to represent the “animacy” feature. We
therefore simply used the settling time for this animacy unit as a measure of the semantic
decision time. A group of one or more units was considered to have settled to a correct
response once each of those units was within 0.3 of its correct value, the same correctness
criterion used during the learning phase. Because we measured responses from all of the
orthographic layer units as well as the animacy unit on each trial, all of these units were
required to be in correct states for the responses on this trial to be considered correct. If
the network did not arrive at a correct response by the time all units’ states had stopped
changing (to within a tolerance of 0.001), it was considered an error trial. Priming scores for
correct trials were calculated, for each word, as the average difference between settling time
(ST) on related trials and unrelated trials. The baseline or “unrelated” ST was taken to be
the mean settling time for each target word when primed by a set of unrelated words. The
“related” ST was measured for each target primed with a mixture of related and unrelated
words.



Results and discussion

The mean STs averaged across words on correct trials and percentages of error responses
in each condition for Simulation 1 are shown in the top half of Table 1.> On average, the
network settled about 1 cycle faster for related primes compared to unrelated primes, at
both the orthographic and semantic levels. These priming effects are plotted in the left
half of Figure 2. Paired t-tests on the mean STs for each word on related versus unrelated
correct trials revealed that on the semantic task priming was significantly greater than zero
(tso = 2.37) whereas on the orthographic task it was not. For these and all subsequent
analyses, effects are described as significant if the probability of observing the effect is less
than .05; all t-tests and sign-tests were one-tailed. There was a very strong trend toward
positive priming on the orthographic ST scores. However, a closer inspection of the mean ST
scores for individual words revealed that this trend was not at all consistent across words.
At the orthographic level, priming was actually negative for 20 of the 40 words, zero for 4
words, and positive for 16 words. Further, of the 16 positive cases, only 2 were very large
and the rest were close to zero. Thus the apparent trend appears to be a result of a couple
of outliers. The high variability in orthographic ST scores may be a result of the fact that
we used a small set of short words with relatively high orthographic overlap. In contrast, at
the semantic level priming was much more consistent across words. It was negative for only
6 words, zero for 10 words and positive for 24 words. A paired t-test on the mean priming
scores (unrelated minus related ST) for each word at the orthographic versus the semantic
level revealed that the difference was not significant. Again, this appears to be a result of
the large variability in the orthographic ST scores. A paired t-test on the mean error rates
for each word on related and unrelated trials revealed no significant differences. Thus, the
results are consistent with our prediction that there should be a strong long-term semantic
priming effect on a semantic decision task but not on an orthographic task.

‘ Insert Table 1 about here ‘

‘ Insert Figure 2 about here ‘

Simulation 2

In Simulation 1 we used multiple related primes per target, because it was thought that
multiple primes would be most likely to produce long-term priming in human participants.
Simulation 2 was run to test whether long-term priming would also be observed with a single
related prime per target. It was predicted that there would be less semantic priming in this
case.

3We used the same error measure for both tasks. Alternatively, one could measure error rates separately
for the two layers.



Method

The same network, tasks, and procedure as in Simulation 1 were used. This time, however,
each target word was only primed with a single related prime per block. Twenty blocks were
run for each of the forty target words. Each block once again consisted of a priming list of ten
words, followed by a single target word. In the related primes condition, a block consisted
of a word randomly chosen from the same category but not identical to the target, and
nine randomly chosen primes, each from a different randomly selected unrelated category,
followed by a target word. In the unrelated primes condition, a block consisted of ten
randomly chosen unrelated primes, each selected from a different one of ten randomly chosen
unrelated categories, followed by a target word. In both conditions, the randomly chosen
categories were sampled with replacement. As in Simulation 1, the priming words were
presented in a random order, with the constraint that the last three prime words must be
unrelated to the target.

Results and discussion

The mean STs averaged across words and percentages of error responses in each condition
for Simulation 2 are shown in the bottom half of Table 1. On average, the network settled
0.12 cycles faster for related targets at the orthographic level and 0.60 cycles faster for
related targets at the semantic level. Paired t-tests on the mean STs for each word on
related and unrelated trials revealed significant priming at the semantic level (t39 = 1.93),
but not at the orthographic level. These priming effects are plotted in the left half of Figure
2. An examination of the mean priming scores for individual words revealed that at the
orthographic level, semantic priming was positive for 2 words, negative for 1 word, and zero
for the rest. At the semantic level, 12 scores were positive, five were negative and the rest
were zero. A paired t-test on the mean priming scores (unrelated minus related STs) for
each word at the semantic versus the orthographic level revealed that there was significantly
more priming on the semantic task than on the orthographic task (39 = 1.92). Paired t-tests
on the mean error rates for each word on related and unrelated trials revealed no significant
differences at any level. To compare the results of Simulations 1 and 2, we performed a
paired t-test on the mean semantic priming scores for each word. It was predicted that there
would be greater semantic priming in Simulation 1 than in Simulation 2. Although there
was a trend in this direction, a t-test revealed that the difference was not significant.

To test more directly our hypothesis that priming involves deepening the attractor basins
for primes and related words, we also computed the depth of the attractor basins for words
before and after priming. The depth of any point in the state space of a DBM network can
be determined by computing the free energy of the network (see Hinton, 1989). Details of
this computation are provided in Appendix A. Conceptually, the energy can be thought of as
a measure of the amount of tension in the network. If a pair of units are strongly linked but
they are in opposite states, there is tension between them, raising the energy of the system.
The same is true if they are negatively linked but in the same state. Thus, a network in
a low energy configuration has each pair of connected units’ states in good agreement with



the constraints imposed by the connection weights. The energy is a continuous function
over the entire space of possible states of the network. If we could plot this function before
and after priming, we should be able to see how the attractors are reshaped. However,
the state space is high-dimensional so it is impossible to display the attractor basins for
words graphically. However, we can plot one-dimensional sub-regions of this state space by
computing the energy of any two points in the space, as well as a series of intermediary
points along a linear trajectory connecting those two endpoints, to visualize how priming
shapes the attractor basins. We start by computing the energy of the two end-points, e.g.
the attractor states for CAT and DOG. We then compute the vectorial difference between
those two states; this gives us the direction one must travel in state space to go directly from
CAT to DOG. We can now interpolate points along this path by taking the state vector for
CAT and adding to it some proportion of the difference vector. Setting the network states
to these interpolated points, we can compute the energies at each of these points to get a
function of energy along this one-dimensional path in state space.

We computed the energy of the network after it had been presented with a prime word,
after it had been presented with a target word, and also the energy of 100 states computed
at evenly spaced intervals between these two end states, before and after priming. We found
that the energy changes were too small to be visible on the graph (usually in the fourth
or fifth significant decimal place), although they were highly reliable. We also examined
the changes in energy at the semantic and orthographic levels separately. Semantic level
energy was computed by applying the free energy equation given in Appendix A to the units
in the semantic layer, and considering only within-layer connections. Orthographic layer
energy was computed similarly for the orthographic units. Paired t-tests were performed
on both the means and medians of these energy scores for each word in the related versus
unrelated conditions. In Simulation 1, 34/40 words showed decreases in mean semantic
layer energy after priming with related words compared to the unrelated baseline, and 38/40
showed decreases in median semantic layer energy. Although the effect on the mean semantic
energies was not significantly different from zero (average unrelated minus related mean
semantic energy = +.02, standard error = .28, ¢39 < 1), it was significant for the medians
(average of median semantic energy changes = —.44, standard error = .25, ¢39 = 1.8). The
lack of significance in the means was clearly due to five outliers which represented huge
increases in mean energy (and one small increase), relative to the other 34 words that all
showed small but consistent decreases. The pattern of energy changes for the orthographic
layer was very similar but in the opposite direction: 29/40 words showed increases in mean
orthographic layer energy in the related condition, and 34/40 of the words showed increases
for the medians. T-tests of the orthographic layer energy changes were not significant for
either the means or the medians.

Because of these small differences, we therefore used a much larger learning rate of 0.02
rather than 0.0002 for generating the energy plots, which produced more noticeable differ-
ences. Typical examples of such graphs are shown in Figure 3 a) and b), for two pairs of
words. In Figure 3 a), we see energy plots for a pair of semantically-unrelated words (BED
and CAT) before and after priming by the word BED. The energy at the left edge of the



curve, at the attractor state of the word BED, is lower after priming with BED (repetition
priming). The energy of the curve at the rightmost point, at the attractor state for the word
CAT, does not change much if at all after priming with BED. Thus, there is no evidence
of semantic priming for unrelated words. In Figure 3 b), we see energy plots for a pair of
semantically-related words (DOG and CAT) before and after priming by the word DOG.
This time, the primed curve is lower at all points along the trajectory through the state
space from DOG to CAT. Thus, the basins of attraction have been deepened for both the
prime and target word. Additionally, the energy barrier between the two attractor states,
i.e., the energy maximum near the midpoint of the curve, has been lowered after priming.

Insert Figure 3 about here

We have demonstrated a general pattern of results in our simulations that was predicted
by our computational model. Priming deepens the attractor basins of both primes and se-
mantically similar words, leading to faster semantic but not orthographic decisions. Further,
we saw a trend toward multiple primes being more effective than single primes at speed-
ing performance on semantic decisions. We view these results as a preliminary test of the
feasibility of our model, providing grounds to investigate the long-term semantic priming
phenomenon further. The next question is whether similar results would hold in human par-
ticipants. If the model has captured the essential aspects of semantic memory representation
for the current tasks, as well as the basic mechanism of long-term priming, we should see
at least qualitative agreement between our pattern of simulation results and the pattern of
priming in human participants.

Experiment 1

We designed Experiment 1 on the basis of the results of Simulation 1, to test the hypothesis
that long-term semantic priming in human participants would produce more facilitation on
a semantic task than on a lexical decision task. To keep the conditions as close as possible
to the simulation experiments, we attempted to use similar tasks. There is some controversy
in the literature as to what performance index in a connectionist network constitutes a
good model of lexical decision. Some have argued that lexical decision could be based, at
least in part, on phonology (Seidenberg & McClelland, 1989; Rueckl, 1995). Here, we used
orthographic settling time to model lexical decision time in human participants. Seidenberg
& McClelland (1989) used orthographic error scores in their networks to model human lexical
decision errors. However, Besner et al. (1990) found that this model generated unrealistically
high error rates for nonword processing, calling into question whether it was even capable
of handling nonword performance.* Here, we are concerned with reaction times to words

4One drawback to Seidenberg & McClelland’s implementation of their model is that, unlike ours, it lacked
a semantic layer. This may have contributed to its poor nonword reading performance. Subsequently, Plaut



rather than nonword performance in our model. In this respect, as our experiments show,
orthographic settling time in our model seems to capture human performance in semantic
priming quite well, at least qualitatively. Note that we are not claiming that lexical decision
is a purely orthographic task; it is likely influenced to some degree by semantics. Likewise, in
our network simulations, the orthographic layer was influenced by top-down feedback from
semantics, although we referred to orthographic settling time as an “orthographic task”.

For the semantic decision task, as in the network simulations, the task was an animacy
decision; participants judged words to be living or non-living. For each participant, half the
target words were primed with a set of semantically similar words. Participants performed
the same decision for both prime and target words.

Method

Participants: Sixty undergraduate students from the University of Toronto participated in
our study for credit in an Introductory Psychology course.

Materials:

The prime words presented to each participant were drawn from a list of 150 words, each
chosen to be closely semantically-related to one of the 30 target words, so there were 5 primes
per target. We used multiple primes per target to maximize the chance of obtaining a long-
term semantic priming effect, as Rueckl (1990) did in studying long-term form priming. The
primes were chosen from the same Battig-Montague category norms (Battig & Montague,
1969) as well as from a thesaurus of synonyms.

The target list consisted of 45 four- and five-letter words. Thirty of these were target
words (15 primed and 15 unprimed) and fifteen were filler words. To minimize the possibility
of any short-term semantic priming from occurring within the target list, we chose each target
word from a different category. The fillers were 15 pronounceable nonwords if the task was
lexical decision, and 15 words semantically-unrelated to the targets if the task was semantic
decision.

The prime words and corresponding targets were divided into two equal sized sublists,
shown in Appendix C. Each participant was presented with only half the primes in the
study list (75 of the 150 primes), either sublist A or B, and tested on the entire target
list (30 words) including both primed and unprimed targets. The sublist of primed targets
was counter-balanced across participants, so that each target word was primed for half the
participants and unprimed for the other half.

Procedure:  Participants were assigned to either the “lexical decision” or “semantic
decision” group. Within each of those groups, half were primed on sublist A and half on
sublist B (Appendix C). Stimuli were presented on a Macintosh computer screen. At the
start of each trial, a large fixation dot appeared in the middle of the screen for 1 second,
after which time a word appeared in the center of the screen, and remained there until the

& McClelland (1993) have shown that attractor networks with a better orthographic representation are
capable of reading nonwords with error rates and specific error patterns which are very similar to those
made by humans.



participant responded. Participants were instructed to be prepared to respond by resting
one finger on the ‘;’ key and one on the adjacent ‘. key using their dominant hand. A
“yes” response was made by pressing the ‘’ key and a “no” response by pressing the °.” key.
After the participant responded, the word disappeared and the screen remained blank for
500 milliseconds before the next trial began.

Participant were given three practice trials, followed by three blocks of experimental trials.
The participant was instructed to make either a lexical decision or a semantic decision for
each word, and to respond as quickly and as accurately as possible. In the semantic decision
case, the participant was told to respond “yes” if the item represented something living, or
part of a living thing, and “no” otherwise. In the lexical decision case, the participant was
told to respond “yes” if the item was a word, and “no” otherwise.

Experimental trials were divided into 3 blocks, each consisting of a prime list and a target
list. Each prime list within a block consisted of a randomized list of 25 semantic primes for
the corresponding 5 primed targets in the following target list. Each target list in a block
consisted of a randomized list of 15 words: 5 fillers, 5 unprimed targets, and 5 primed targets.
This resulted in an average lag of 10 items between the last related prime word in a prime
list and the corresponding target word in the following target list in the same block. There
was a two-minute pause after each block of trials, as well as within each block between the
prime and target lists. Which half of the target list was primed was counter-balanced across
participants; thus, half the participants’ prime lists consisted of primes from list A, and the
other half’s were from list B. Participants were instructed to make the same decision for
each word in each list. They were not told about the distinction between prime and target
lists.

Results and discussion

Trials on which an incorrect response was made were excluded from data analyses in this and
all subsequent experiments. The mean RT and error rates and standard errors are shown
in the top half of Table 2. T-tests on the error rates for each task revealed no significant
differences. Thus, error rates were similar for primed and unprimed trials. The higher overall
error rates on the semantic decision task probably reflect the greater difficulty of this task,
also reflected in the overall increase and greater variability in RTs. Because the distribution
of participants’ RT scores was skewed by some extremely long RTs, we analyzed the medians
rather than the means in the following and all subsequent analyses. A three-way analysis of
variance with task (lexical/semantic decision) and sublist (A or B) as between-participants
factors and priming condition (primed/unprimed) as a within-participants factor, conducted
on the participants’ median reaction times, showed no significant effect of word sublist, nor
any significant interactions involving word sublist. The word sublist factor was therefore
dropped from subsequent analyses. A two by two (priming by task) analysis of variance
on the same scores yielded significant main effects of priming (F(1,58) = 10.58, MSE =
21533.8), and task (F'(1,58) = 25.73, MSE = 634889.3), as well as a significant interaction
between these factors (F'(1,58) = 4.03, M SE = 8208.8). These priming effects are plotted in



the right half of Figure 2. The interaction between priming and task type was investigated
further by performing separate t-tests on the data from the lexical decision and semantic
decision tasks. There was a significant priming effect on the semantic decision task (ty9 =
2.97), but not on the lexical decision task (ty9 = 1.3), though there was a trend toward long-
term priming on lexical decisions. In a two by two (priming by task) items analysis of variance
on the median scores for each word, treating items as participants, there were significant main
effects of priming (F(1,29) = 11.72, MSE = 21627.7) and task (F'(1,29) = 90.326, MSE =
654606.4). Although the task by priming interaction was not significant in the items analysis,
there was a trend in this direction (F'(1,29) = 2.634, MSE = 11213.3,p < 0.12).

Because our target list included more inanimate than animate words, we also performed
a two by two (priming by animacy) items analysis of variance with animacy as a between-
participants factor on the semantic decision scores. There was no significant effect of animacy,
nor an animacy by priming interaction. Sign tests revealed that a significant proportion
of the median scores were faster in the primed than in the unprimed condition for the
animacy decision task, for both participants (20/30) and words (23/30). For the lexical
decision task, the proportions of median scores showing priming did not differ from chance
levels, for both participants (12/30) and words (17/30). In summary, as predicted, our
semantic priming manipulation produced a long-term facilitatory effect spanning more than
two minutes, evidenced predominantly on the semantic decision task.

‘ Insert Table 2 about here ‘

On average, participants’ median semantic decision times were 43 milliseconds faster for
primed words than for unprimed words (a 5.7% speedup), as compared to an insignificant
10 millisecond (1.7%) speedup on lexical decision. These results are qualitatively similar to
the pattern of results seen in Simulation 1, where priming with blocks of words from two
categories produced a 2.25% speedup on semantic settling time, and an insignificant 0.88%
speedup on orthographic settling time. Thus, we have demonstrated both in simulations and
experiments that the long-term semantic priming effect depends critically on the degree of
semantic involvement in the task.

One drawback to our experimental design is that in the lexical decision condition, as
in many lexical decision studies, only the target lists contained nonwords; the priming lists
contained none. Thus, it is possible that participants could have developed a bias toward
making fast “yes” responses without fully processing the words. This could explain our
failure to find long-term priming on the lexical decision task. Joordens & Becker (1997)
performed a similar lexical decision experiment with much longer word lists of which 50%
were nonwords. Primes and targets were separated by varying lags within blocks. The type
of nonwords used for “fillers” was varied within participants and between blocks to be more
or less word-like. In one condition, they were unpronounceable nonsense words - the least
word-like; in another, they were pronounceable nonsense words; and in the third, they were
pseudo-homophones (e.g. BRANE) - the most word-like. As in our experiment, there was
no semantic priming on lexical decision at lags greater than one for unpronounceable or
pronounceable nonsense words. Interestingly, in the pseudohomophone condition there was



long-lag priming, suggesting that when participants are forced to rely more on semantics,
even lexical decisions can exhibit long-term semantic priming.

In Experiment 1, there were five primes per target. In our simulations, we demonstrated
that the long-term semantic priming effect also holds when there is only a single prime per
target, although there was a trend toward a smaller effect in Simulation 2. Experiment 2
was conducted to determine whether people behaved according to the model’s predictions.

Experiment 2

In Experiment 2, we used the same materials as Experiment 1 except that each participant
was only presented with one of the five primes for each target word. It was predicted that
there would still be long-term priming on semantic decisions, although the effect might be
somewhat weaker. Because there was no evidence of semantic priming in lexical decision in
Experiment 1, this time, participants only performed the semantic decision task.

Method

Participants: Thirty undergraduate students drawn from the same participant pool as for
Experiment 1 participated in our study.

Materials: The same target words and prime words as in Experiment 1 were used, but
each participant was presented with no more than one prime word per target. The 150
primes from Experiment 1 were divided into 5 sublists of 30 prime words, one for each of
the 30 target words, and these sublists were further divided into primes corresponding to
target sublist A and sublist B (Appendix C). Participants were each assigned to one of ten
corresponding groups (five prime sublists by two target sublists), and three participants were
run in each cell.

Procedure: The same procedure was used as in Experiment 1 for the semantic decision
condition, except that this time each participant was presented with only one block of words,
consisting of a list of 15 prime words followed by a list of 30 target words, with a two-minute
pause in between. This resulted in an average lag of 21.5 items between a given prime in
the prime word list and the corresponding word in the target list.

Results and discussion

The mean reaction times and percentage error rates and standard errors are shown in the
bottom half of Table 2. These error rates are similar to those for the semantic decision task
in Experiment 1. A t-test on these error rates revealed no significant difference between the
primed an unprimed conditions. As before, semantic priming produced a facilitatory effect
on the semantic decision task. This priming effect is plotted in the right half of Figure 2.



A two-way ANOVA on the participants’ median scores with priming condition as a within-
participants factor and sublist (A,B) as a between-participants factor revealed a significant
main effect of priming (F'(1,28) = 6.57, MSE = 18200.42). No other effects were significant.
On average, participants were 35 milliseconds faster in making semantic decisions for primed
words than for unprimed words, a speedup of 4.9%. A one-way items analysis of variance
treating items as participants and priming condition as a within-participants factor revealed
a marginally significant priming effect (F(1,29) = 4.071, MSE = 11956.8). When animacy
was added as a between-participants factor, there were no significant effects. Sign tests
revealed that a significant proportion of the median scores were faster in the primed than in
the unprimed condition, for both participants (20/30) and words (22/30).

The priming effect on the semantic task in Experiment 2 was still surprisingly large, at
4.9%, compared to 5.7% for Experiment 1. Because the two experiments used exactly the
same methodology apart from the difference in the makeup of the priming blocks, we com-
bined the semantic decision scores from Experiments 1 and 2 into a single two-way analysis
of variance, with priming as a within-participants factor and experiment as a between-
participants factor. This analysis revealed once again a significant main effect of priming
(F(1,58) = 15.66, MSE = 45825.21). Although there was a trend toward more priming in
Experiment 1 (multiple primes per target) than Experiment 2 (single prime per target), the
interaction was not significant. These results parallel the pattern of results in Simulations 1
and 2.

The results of Experiments 1 and 2 are consistent with our interpretation of an automatic
learning process underlying the long-term semantic priming effect. However, an alternative
interpretation is that participants used recollective processes. Perhaps they explicitly recog-
nized some targets as being related to previously seen items. Experiment 3 was designed to
address this issue, as well as to investigate the decay of the effect.

Experiment 3

One way to our improve our experimental procedure to minimize the possibility of strategic
processing is to use much longer word lists. Experiment 3 was designed to determine whether
the long-term semantic priming effect would hold up in longer word lists, while exploring
the potential decay of the effect by systematically varying the prime-target lag. In this final
experiment, we used a list of 48 prime-target word pairs and a slightly different procedure:
prime and target words were interspersed within a single long block of trials. Three lags were
examined; 0 items, 4 items and 8 items. The ordering of stimuli was randomized, subject to
two important constraints: 1) keeping response history constant across related and unrelated
trials and 2) rotating the targets and primes through the two different relatedness conditions
and the three different lags.



Method

Participants: Sixty undergraduate students drawn from the same participant pool as for
Experiments 1 & 2 participated in our study.

Materials: Forty-eight prime-target pairs were chosen to maximize semantic relatedness.
These items, as well as the pratice and filler items are listed in Appendix D. Some of the
pairs were taken from the stimuli used in Experiment 2 of Joordens & Becker (1997), whereas
others were provided by Timothy McNamara (personal communication, November 16, 1995).
The filler words were selcted to ensure that the proportions of animate and inanimate items
were approximately equal. Each prime-target pair was coupled with another pair, to allow the
related prime for one target to serve as the unrelated prime for its coupled target. Four prime-
target lists were created from these coupled prime-target pairs, so that each participant was
only exposed to one of the four possible pairings of the four words. For example, ICEBERG-
GLACIER was coupled with FATE-DESTINY. Thus, a given participant would see either
ICEBERG followed (after a lag of 0, 4 or 8 items) by GLACIER, ICEBERG followed by
DESTINY, FATE followed by DESTINY, or FATE followed by GLACIER.

Procedure: In the present experiment, we used a running animacy decision task in which
participants make animacy decisions to a stream of stimuli, with each subsequent stimulus
presented shortly after a decision is made to the current stimulus. Unlike the previous two
experiments, there was no separation into a study and test phase. Experimental trials were
divided into 8 blocks. Each block contained 12 words: three primes (which could be related
or unrelated), three targets, and six filler words. It is important to note, however, that this
block structure was not made apparent to the participants. From a participant’s perspective,
the experiment appeared to be structured as a single block of 116 trials. The first 20 of these
trials was practice. The next 96 were experimental trials.

Given that we also wanted to rotate the stimulus pairs through the different lags, it was
further required that there be three versions of each of the four lists described above; one
in which the coupled prime-target pairs occurred at a lag of 0, one at a lag of 4, and one at
a lag of 8. Thus, the complete counterbalancing of prime identity, target identity, and lag
required that 12 separate lists be created. Response history across the related and unrelated
versions of each lag was controlled within each of these lists in the following manner. First,
four different blocks of 12 trials were created, each having a slightly different response history
for the three lags. For example, the first block consisted of; P8, F, PO, TO, F, F, P4, F, F,
T8, F, T4, where F is a filler word, P8 is the prime for lag 8, T8 is the target for lag 8, etc.
Within each block, two of the primes were related and one was unrelated. Each block and its
mirror version were presented within each list, with the mirror version of the block having
identical response characteristics but a different “relatedness” associated with each lag. This
insured that every participant experienced one related and one unrelated trial at each of the
four response histories within each of the three lags. Response history was not controlled
across the different lags, given that the critical issue is to allow a controlled comparison of
responses to the related and unrelated targets within each lag, not across the different lags.

The timing of events was as follows: First, the message “Press the (Space-bar) when
you’re ready to begin” was presented. Depression of the space-bar resulted in a 300 ms blank



field followed by presentation of the first stimulus. Each response then initiated another 300
ms blank field followed by the subsequent stimulus, and so on, until all stimuli 116 had been
presented and responded to.

Apparatus:  Stimuli were displayed on a 15 inch SVGA color monitor and measured
approximately 8mm tall by 7mm wide. Participants were positioned approximately 65 cm
from the monitor and used the keyboard to enter their responses. Participants pressed the
“1” key to indicate an “animate” decision, and the “2” key to indicate an “inanimate”
decision. They were instructed to respond as quickly and accurately as possible.

Results and discussion

Separate analyses were conducted on the mean reaction times for correct word decisions and
on the mean percent errors. Each analysis initially consisted of a 3 (lag) by 2 (context)
analysis of variance. T-tests were then conducted to examine the reliability of the priming
effect at each lag. The results of Experiment 3 are presented in Table 3 and Figure 4. With
respect to the time it took participants to correctly categorize the targets as animate or
inanimate, examination of Figure 4 suggests that priming occurred at all lags.

| Insert Table 3 about here |

‘ Insert Figure 4 about here ‘

Statistical analysis of the reaction time data revealed only a main effect of context
(F(1,59) = 18.3, MSE = 23002.9). Pairwise t-tests revealed that priming effects were
significant at all lags (all t{ys > 2.3). An analogous analysis of variance performed on the
error data revealed a marginal effect of context, (F(1,59) = 3.4,p < .08). Planned t-tests
revealed that the only difference in error rate to reach significance across related and unre-
lated contexts was the 4% priming effect observed at lag 4, (t59 = 2.3). It is important to
note that this significant priming effect in errors at lag 4 coincides with the smallest priming
effect in reaction time.

The results of the present experiment extend those of our previous Experiments. Whereas
our first two experiments used relatively short word lists and allowed the prime-target lag
to vary randomly, Experiment 3 used longer word lists and systematically varied the prime-
target lag. The fact that long-term priming was still seen at the longest lag in our experiment
supports our assumption that the basis of the priming effect is automatic learning rather
than other strategic processes such as recollection. Further, our results indicate that this
effect decays very little, if at all, over the range of lags we studied.

It should also be noted that there is considerable variability in RT scores for the animacy
decision task. Thus, the apparently smaller priming effect at lag 4 compared with lag 8 in
the present experiment is likely due to chance or due to the fact that some portion of the
priming effect manifested itself in errors for the lag 4 condition as opposed to reaction time.



General Discussion

We began by making the novel prediction that it should be possible to produce long-term se-
mantic priming. This prediction was generated by our computational model of priming, and
would not have been made without the model. Our experiments confirmed this prediction,
and are the first to demonstrate a semantic priming effect spanning many intervening items
and lasting much longer than a few seconds. Our theoretical account of long-term priming
stated that priming involves changes in distributed representations that deepen the basins
of attraction for primed words. Words that are semantically similar would also tend to have
their attractors deepened, because these attractors presumably overlap along many dimen-
sions in semantic space. This led to the prediction that semantically similar words should
benefit from priming on tasks involving semantic decisions, because the system should be
able to settle into the correct semantic attractor more quickly. However, because semanti-
cally similar words are usually unrelated orthographically, there should be less benefit on
lower-level tasks like lexical decision. Results from both our simulations and experimental
data support these predictions. To summarize, Simulation 1 showed significantly faster set-
tling time in the semantic but not in the orthographic layer in the network after priming
with multiple semantically-related primes. Simulation 2 showed the same pattern of results,
when only one prime per target was used. Graphs of one-dimensional cross-sections of the
energy surface of the network revealed that our priming manipulation did indeed lower the
basins of attraction for both primes and semantically-related words. In Experiment 1 we
replicated the results of Simulation 1 in human participants, who showed priming by mul-
tiple semantic primes on a semantic but not a lexical decision task. Note, however, that
in both the simulations and the model there was a small trend toward long-term semantic
priming on lexical decision. In Experiment 2, as predicted by the model, we found long-term
semantic priming after only a single prime. Finally, Experiment 3 replicated the effect at
lags of 0, 4 and 8 items using a longer list of test items. Thus, our computational model
and preliminary simulations were able to generate novel, testable predictions that guided
our experimental work.

We would not necessarily expect the amount of priming to be in precise quantitative
agreement between the simulations and human experiments. Our simulations involved a
small network of 269 units and a very small training set of only 40 words and 5 categories.
In spite of these simplifications in the implemented version of our model, the main results
are in surprisingly close qualitative agreement with the experimental data. Thus, we have
suggestive results from our simulations, and converging evidence from experiments, that
are consistent with our prediction that long-term priming involves changes in connection
strengths in distributed representations that alter the attractor basins of primes and related
words.

Our model suggests one explanation as to why previous experiments in the literature
failed to produce long-term semantic priming on lexical decision: the match between the



representational level of prime-target overlap (e.g. orthographic versus semantic) and the
level of processing in the test task is a critical variable. If the prime and target words have
overlapping basins of attraction only at the semantic level, for example, we would expect to
see evidence of priming only on tasks that engage semantic processing to a sufficient degree.
Lexical decisions on words embedded in a background of scrambled nonwords are easy to
perform quickly without doing any semantic retrieval. However, as Joordens & Becker (1997)
have shown, when the lexical decision task is made more difficult by making the nonwords
more word-like, semantics does appear to be important for making accurate decisions and
thus long-term semantic priming is observed even on this task. Note that our experiments do
not allow us to determine whether it is making animacy decisions on the prime, the target,
or both, that is necessary to observe long-term semantic priming. Our model predicts that
both are critical, as is consistent with the literature on long-term repetition priming (e.g.
Vriezen et al., 1995).

Other forms of long-term priming

We now examine two other forms of long-term priming, morphological and conceptual prim-
ing, both of which can be accommodated within the framework of our model. We then
compare the major theoretical accounts of long-term priming to our own.

Morphological priming:  Morphological priming in lexical decision has been reported
at long lags in a variety of languages including English (Stolz & Feldman, 1995), Hebrew
(Bentin & Feldman, 1990), Serbo-Croatian (Feldman & Moskovljevi¢, 1987) and American
Sign Language (Emmorey, 1991). These findings might seem to be at odds with our re-
sults. Why should it be so easy to produce long-term priming for morphologically- but not
semantically-related words on this task? To address this question, one needs to consider
the levels of representation of semantic and morphological relatedness. Many models of lex-
ical access (see e.g. Chialant & Caramazza, 1995) assume that words are decomposed into
morphologically-based constituents at a pre-semantic, lexical level of representation. If our
network model was trained on a much larger word corpus, it might be expected to discover
some aspects of morphological structure as a useful intermediate-level representation in map-
ping from orthography to semantics and phonology. Thus, the hidden layer subsequent to
the orthographic layer in our network could serve this role, among other things. It should be
noted, however, that whether there is in fact a separate level of morphological representation
is a matter of debate in the literature (see Smith, 1995, for example, for a dissenting opinion
and some simulation results).

If the above view of morphological representation is correct, and if we are correct in
assuming that lexical decisions are based primarily on the settling time of pre-semantic units,
then the lexical decision task would depend directly on the settling time of morphological
representational units but would not depend directly on semantic level activation. This would
explain why long-term priming is seen in lexical decisions for morphologically similar words
but is not normally seen for semantically similar words. However, this argument does not




preclude the possibility that the lexical decision task is sensitive to semantic influences.® In
fact, there is plenty of experimental evidence to support this possibility (reviewed in Balota,
1990). Our network model explicitly incorporates semantic influences on lexical decision
through feedback connections from the semantic to the orthographic layer via a hidden
layer. Thus, Joordens & Becker (1997) found that under conditions thought to increase
the importance of semantics in making lexical decisions, long-term semantic priming can be
obtained.

Conceptual priming: Findings in the literature of long-term conceptual priming (re-
viewed in Roediger, 1990; Roediger & McDermott, 1993) are consistent with our theoretical
account of long-term semantic priming. These studies have found long-term priming on
conceptually-driven tasks such as category exemplar generation (e.g. the word DOG is
presented during a study or priming phase, and is later generated in response to the cue
ANIMAL). An attractor network could account for such an effect in the following way: the
system settles into an attractor state in response to the prime word, and long-term priming
results. This deepens the basin of attraction for the prime, which overlaps with that of the
cue, making the same response more probable or more rapidly generated when the cue is
subsequently encountered. Thus, we view long-term semantic priming and conceptual prim-
ing as having very similar underlying mechanisms. Future developments of the model will
address how long such affects can last, and how they can be reinstated in the appropriate
context.

Woltz (1990;1996) has studied a more complex form of conceptual /repetition priming in
which the participants’ task is to judge whether pairs of words (e.g. MOIST-DAMP) have
the same meanings. When the same pair of words reappeared later in the list, substantial
long-lag priming was observed. Moreover, when the prime pair preceded a synonymous tar-
get pair (e.g. MOIST-DAMP followed by SOGGY-WET) there was also long-lag priming.
This finding could be accommodated within our framework for long-term semantic priming,
assuming each word’s attractor basin in the prime-pair was individually deepened, allowing
faster processing of the target-pair. However, results in other conditions of Woltz’s (1990)
second experiment do not fit this explanation. Specifically, when either the prime or tar-
get pair was unrelated, even if corresponding elements of the prime and target pairs were
synonymous (e.g. AMPLE-ENCLOSE followed by ENOUGH-SURROUND), there was no
evidence of long-lag priming. Further, Woltz’s (1996) second experiment included some
identical pairs of primes and targets that were synonymous (e.g. MOIST-MOIST followed
by DAMP-DAMP), with sequential word presention to ensure full semantic processing of at
least the first member of each pair; in this condition, there was no long-lag priming. Woltz
concluded from these data that priming on his semantic comparison task primarily involves
the particular processes involved in comparing word meanings, rather than a more general
reinforcement of semantic-level representations. Although these data appear to fly in the
face of our semantic learning explanation, it may be that the added complexity of Woltz’s

5Further, it is important to note that morphologically related words are usually also semantically related.
Hence, in Rueckl et al’s (1997) model of morphological priming, the semantic to orthographic pathway plays
an important role.



task relies heavily upon post-semantic-retrieval processing, and therefore is insensitive to
semantic learning effects. More specifically, the bottleneck in this task may be the word
comparison stage, in which case any benefits of enhancing semantic level representations
would be small in comparison to effects of enhancing the particular connections involved in
making the same/different judgement. Thus, we would predict that if participants engaged
in semantic comparisons on the prime list, followed by simple semantic decisions on the tar-
get list (e.g. a same/different meaning decision on MOIST-MOIST followed by an animacy
decision on DAMP), one would indeed see long-lag priming. We now consider how our model
could be extended to allow such processing-specific learning effects as reported by Woltz.

Transfer-appropriate processing accounts: Two important theoretical accounts of rep-
etition priming in the literature deal directly with task-specificity effects during the prim-
ing/study phase: Tulving & Schacter’s multiple memory systems theory (Tulving & Schac-
ter, 1990) postulates that different brain sub-systems are involved in different priming tasks,
whereas Roediger’s Transfer Appropriate Processing theory (Roediger, 1990) postulates that
different kinds of processing are required for different tasks. Both accounts predict that a crit-
ical factor in producing priming is a match between the level or type of processing involved
when the participant is responding to primes versus targets. In particular, they predict
task-specific priming effects for data-driven versus conceptually driven tasks. Vriezen et al.
(1995) observed task-specific repetition priming effects even within the semantic domain.
Repetition priming was observed when the task was a size decision (“is it bigger than a
bread box”) at study and a dimension decision (“ is it wider than it is long”) at test or
vice versa. But there was no repetition priming if the judgments at study and test involved
different semantic domains, i.e., size versus animacy.

We are sympathetic to the transfer-appropriate processing accounts described above,
and view them as being compatible with our explanation of long-term priming. Given that
participants apparently can truncate their level of processing as necessary according to task
demands, one would expect the level of long-term priming effects to be in correspondence with
the level of processing. To account for within-level processing-specificity effects such as those
found by Vriezen et al. (1995) and Woltz (1990;1996) we would have to extend our model to
include some sort of selection procedure to focus processing on a particular layer or subset of
units during priming. One way to to do this would be to add a response layer to the network,
and explicitly train it to respond according to the current task demands. It might learn to
make animacy decisions, for example, by inhibiting processing of semantic features irrelevant
to this task. The network would then be prevented from strengthening the connections
between features relevant to the animacy decision and other irrelevant features. Hence, the
network would exhibit no transfer from the animacy decision to unrelated tasks such as
size decisions. A number of studies by Dagenbach, Carr and colleagues (reviewed in Carr
et al., 1994, p. 704-705) provide evidence in support of such an attentional mechanism, at
least during memory retrieval. They postulate that a centre-surround attentional mechanism
modulates the retrieval of weakly activated items, inhibiting irrelevant associated items.

Recollective processes: An alternative explanation of our findings is that the long-term
effects we found are due to learning in an episodic memory system, or to some sort of strategic




processing. For example, perhaps participants noticed the semantic relationship between the
target words and previously encountered words, and this awareness facilitated their semantic
decision-making. This is in contrast to our view that long-term priming involves incremental
learning in a distributed memory system, and that the transfer of priming effects to similar
words is due to automatic generalization of this learning to words with overlapping basins of
attraction. Such a mechanism should not require conscious strategies, although they might
play an additional role. Further, it may turn out that conscious processing of the prime
is necessary for long-term learning - even without the necessity of laying down an episodic
memory trace.

Ratcliff & McKoon (1988) have questioned the notion that all long-term priming effects
are subserved by the same mechanism. For example, Ratcliff et al. (1985) have reported an
intermediate-range priming effect for newly learned associates in recognition memory tasks,
whose time course appears to differ from both short-term and long-term priming. Whereas
in lexical decision semantic/associative priming is typically found to decay rapidly after one
or two intervening items, in recognition priming, the decay (for repeated items and for newly
learned associates as primes) is much more gradual but is largely diminished by a lag of 8
items. It is possible that this effect is due to the use of conscious strategies. Our procedure
was designed to minimize the use of conscious strategies by forcing participants to respond
quickly to serially presented items. However, it is possible that our word lists (Experiments
1 and 2) or lags (Experiment 3) were short enough that participants did in fact employ
recollective strategies.

Short-term semantic priming

Having discussed various findings and theoretical accounts concerning long-term priming, we
now turn to the literature on short-term semantic priming. Another possible interpretation
of our findings is that they are qualitatively the same as traditional short-term effects. Per-
haps existing theories of short-term priming could be extended to accommodate our findings.
But before turning to these theoretical accounts, we discuss another important distinction
in the semantic priming literature, between semantic and associative relatedness. Most the-
ories make different predictions depending on whether words are purely semantically-related
(e.g. BREAD-CAKE) or are both semantically- and associatively-related (e.g. BREAD-
BUTTER).

Semantic versus associative priming: Whether short-term semantic priming occurs at
all for words that are purely semantically-related but not associatively-related has been a
subject of debate in the literature. Although some studies have reported pure semantic
priming on lexical decision (e.g. Fischler, 1977; Lupker, 1984), Shelton & Martin (1992)
found no such effect on this task using a procedure thought to minimize strategic processing.®
However, although Moss et al. (1995), like Shelton and Martin, did not find pure semantic
priming on visual lexical decision for category co-ordinates (e.g. PIG-HORSE), they did
find pure semantic priming for instrument relations (e.g. BROOM-FLOOR). Further, they

6Plaut (1995) has proposed a connectionist model that accounts for Shelton and Martin’s data.



observed pure semantic priming for all types of semantic relations tested on auditory lexical
decision. In a more recent unpublished experiment, Martin, Altarriba, Wayland, & Shelton
(personal communication, December 21, 1995) attempted to replicate the Shelton and Martin
(1992) study testing students at Rice University (the site of the original study) and at other
universities. Although they again failed to obtain priming on the semantically-related pairs
with Rice students as participants, they did obtain significant priming for students at the
other universities with the same materials and procedures. These investigators noted that
the students at the other universities had substantially longer reaction times, which may
have related to the differing results. One account of these findings is that the semantic level
of representation takes longer to activate than the orthographic/lexical level because it is a
later stage of processing. Thus, slower responding participants would be activating semantics
to a larger degree and would therefore be more likely to show semantic priming on lexical
decision.

In a recent set of studies, McRae & Boisvert (1997) used word pairs that had been
assessed for semantic overlap based on empirically derived feature norms (McRae et al.,
1997) and which were not associatively-related according to word association norms. They
found significant short-term semantic priming for both semantic decisions (“does the word
refer to something you can touch”) and lexical decisions. They also tested the semantically-
related word pairs used in Shelton & Martin’s (1992) studies and replicated their null result.
In fact, according to McRae & Boisvert’s similarity rating norms, these words were not highly
semantically-related. Taken together, these studies clearly demonstrate the importance of a
strong overlap in semantics for obtaining short-term “pure semantic” priming. These data
support models of word recognition employing distributed representations of semantics, like
the Hinton-Shallice (1991) model on which our account of long-term priming is based. As
we have argued, sufficient semantic overlap should also be a critical feature for long-term
semantic priming. In fact, we would predict long-term priming if the highly related prime-
target pairs in McRae & Boisvert’s study were presented at long lags. This should be
particularly evident on a semantic decision task.

The above data actually raise a tricky issue for our account of the short- versus long-term
distinction in semantic priming: we have argued that previous attempts to get long-term
semantic priming in lexical decision failed because the task is not sufficiently semantic in
nature. If this is true, then why should there be greater short-term priming in lexical decision
as the semantic overlap between primes and targets is increased, and as participants’ reaction
times become longer? Further, studies that directly manipulated the depth of processing of
the prime have shown that the semantic priming effect is attenuated (Kaye & Brown, 1985)
or eliminated (Smith et al., 1983; Henik et al., 1983; Friedrich et al., 1991) when the prime
is processed in a letter search task. Presumably in such shallow processing tasks semantic
processing is virtually absent. Taken together, these data suggest that some amount of
semantic processing is a necessary condition for short-term pure semantic priming. One
possible resolution of these data with our account is to assume that in order for long-term
priming to occur, the relevant semantic level nodes must be fully activated, or activated
above some threshold. An explicitly semantic task such as animacy decision would achieve



this, whereas a lexical decision or naming task may or may not. Evidence in support of the
assumption that sufficiently strong activation is required for long-term priming comes from
studies showing that subliminal prime presentation eliminates long-term repetition priming
in lexical decision (Forster & Davis, 1984), stem completion and fragment completion (Forster
et al., 1990). Further, as discussed following our first experiment, Joordens & Becker (1997)
indirectly manipulated the depth of processing of primes and targets in a running lexical
decision task by varying the word-nonword similarity, and found long-term priming only for
deeply processed primes and targets.

Contextual priming: Recent studies by Hess et al. (1995) suggest that semantic/associative
relatedness may be too simplistic a notion to explain the richness of contextual priming ef-
fects observed in more realistic reading situations. Their findings indicate that when a word
is read in the context of a related sentence, this broader context predicts priming more con-
sistently than does the single preceding word. These findings have clear implications for
both short-term priming studies, and studies such as ours involving long-term priming, in
isolated word recognition. Clearly, when one is reading a passage of text as compared to a
list of isolated words, a far richer base of information is available to facilitate word process-
ing. These facilitatory effects may indeed turn out to be long-term as well as short-term.
We now turn to two major theoretical accounts of short-term priming: residual activation
theories and compound-cue theory.

Activation theories

Many theories have been proposed to account for short-term semantic/associative priming
which involve some sort of residual activation effect from the prime, for example, by the ac-
tivation of an “expectancy set” of word nodes representing possible associates of the prime
(e.g. Becker, 1980), automatic spreading activation in a localist network (Collins & Quil-
lian, 1969; Collins & Loftus, 1975; Neely, 1977; Posner & Snyder, 1975; Anderson, 1983), or
sustained activation of a distributed representation (Masson, 1989; Masson, 1991; Masson,
1995; Sharkey, 1989; Sharkey & Sharkey, 1992). See Neely (1991) for an excellent survey
of the major findings and theoretical accounts in the enormous literature on short-term se-
mantic/associative priming. We will focus on the localist and distributed activation accounts
here, because they have two things in common with our account of priming: they specifically
address the time-course of semantic priming, and they are based on similar models of word
recognition involving activation patterns in networks of interconnected nodes.

As mentioned in the introduction, the standard finding is that semantic priming fully dis-
sipates for prime-target lags greater than one (see e.g. Joordens & Besner, 1992). Spreading
activation accounts of priming (Collins & Quillian, 1969; Collins & Loftus, 1975; Posner &
Snyder, 1975; Neely, 1977; Anderson, 1983), assume a localist representation in which there
is a node for each word or concept. When a word’s node is activated, activity automatically
spreads across links to related word nodes, with activation decaying with distance and time.
Typically relatedness is defined in terms of free association norms (see e.g. McNamara,
1992b; McNamara, 1992a). Priming occurs when the residual activation of a target node re-



duces the time required to fully activate it by the target word. Priming across a lag of one can
be accommodated easily in these models because of the localist representation. Provided the
intervening word is unrelated, it should not interfere with activation of the prime or target
word nodes. Spreading activation models also predict mediated priming (McNamara, 1992a),
in which concepts related to the prime via two-step and three-step chains would be weakly
activated and therefore weakly primed. However, Ratcliff & McKoon (1994) note that each
word has many associates; therefore, they argue that if each word activates about 20 related
nodes, in a three-step chain, 8000 nodes would be activated, constituting a substantial pro-
portion of the adult lexicon. Spreading activation models could account for long-lag priming
as follows: If some activation spreads from a prime word to its semantically related target,
and that activation decays very slowly, it could persist across arbitrarily many intervening
items. However, by Ratcliff and McKoon’s line of reasoning, if substantial activation were
to persist beyond two intervening items, and each active node in turn activated its own 20
or so associates, one would soon have the entire lexicon activated.

Distributed connectionist models provide a somewhat similar account of short-term prim-
ing in terms of residual activation, but employing a different representation of semantics.
Instead, each word or concept is represented by a pattern of activation across a large set of
nodes, such that related concepts activate overlapping representations. Another fundamen-
tal difference is that typically only one concept can be fully activated at one time, although
multiple concepts could be weakly activated. For the sake of brevity, we will focus on Mas-
son’s (1995) model, noting that Sharkey and Sharkey (Sharkey, 1989; Sharkey & Sharkey,
1992) proposed a very similar model. Masson accounted for short-term semantic priming
using a connectionist model with an input layer representing orthographic features of a word,
a meaning layer representing the word’s semantics, and a phonological layer representing the
word’s pronunciation. When a word is processed by the network, residual activation remains
at the semantic layer. Thus, when a new pattern is presented to the input units, the initial
state of the semantic units can influence the time the network takes to settle to a stable
response. If the initial state is similar to the network’s final response, settling time should
be fast relative to starting from an unrelated semantic state.

Masson’s model has greater difficulty than a localist one in handling priming across a
non-zero lag. Activation of an intervening item’s distributed representation would presum-
ably wash out that of the prime. However, Masson’s (1995) simulations show that if the
intervening item only partially activates the semantic layer, the residual activation is nois-
ier but still sufficient to produce priming. Further, Masson’s model handles the differential
effects of interposing an unrelated versus a neutral prime. When an unrelated prime is pro-
cessed, the network is far from the correct state for the target, and therefore retrieval is slow.
In contrast, a neutral prime such as a row of X’s would not activate a systematic pattern on
the semantic layer and thus would not interfere with semantic priming.

Masson’s account of semantic priming is based on a model of word recognition very
similar to our model. However, both Masson’s and the spreading activation accounts of the
mechanism of priming differ substantially from ours. Any sustained activation account must
predict that some decay occurs. As new stimuli are encountered, their activations must



predominate over the residual effects of previous stimuli. Thus, such effects can only be
very short-lived and ultimately must decay down to zero. Although the exact time-course
of decay of activation is a subject of ongoing empirical investigation, it is generally agreed
that this decay is very rapid and could not possibly accommodate the long-lasting semantic
priming effects obtained in our studies.

If models of short-term semantic priming cannot reasonably accommodate very long-
lasting effects, perhaps our model of long-term priming could be made to accommodate
short-term effects. For example, perhaps the plastic changes associated with long-term
priming are initially very large, but then decay down to some stable baseline as proposed
by McClelland & Rumelhart (1986). This view has a certain appeal, to the extent that
it is parsimonious. However, our experience with training neural networks with very large
weight changes suggests that this is a recipe for disaster. That is, large changes in weights
to accommodate one particular stimulus tend to produce massive interference effects with
subsequent stimuli, along with very high error rates. This pattern of results is not typical
of human participants in priming experiments. Thus, unless the learning is mediated by a
specialized memory system that is relatively immune to interference, e.g. the episodic system,
it is likely to involve fairly small, incremental adjustments (O’'Reilly & McClelland, 1994;
McClelland et al., 1995). Our conclusion is that a combination of short-term activation effects
and long-term weight changes seems the most plausible account of the semantic priming
literature.

Compound-cue theory

In contrast to explicit activation accounts of short-term priming, compound cue accounts
(e.g. Dosher & Rosedale, 1989; Ratcliff & McKoon, 1988; Whittlesea & Jacoby, 1990) view
priming as a result of the combination of the prime and target into a composite cue in
short-term memory. This compound cue produces greater familiarity than either cue alone,
and hence a speeded response. Depending on what sort of processing participants engaged
in between successive items, such a mechanism could conceivably produce priming across
arbitrarily long lags, though for very long stimulus lists the effect would presumably drop
off sharply as the lag increased.

However, when one considers how such a mechanism might actually be implemented
within a distributed network model of memory, it begins to look very much like residual ac-
tivation accounts. For example, Ratcliff & McKoon (1994) have proposed that in a network
such as the Seidenberg & McClelland (1989) model of lexical decision, “... gradual (stochas-
tic) replacement of one item by the next item ... would allow the representation at input to
be a compound ... [which| could percolate through the whole network. To produce semantic
priming effects, ... the semantic layer could represent semantic feature overlap, so that a
compound of related items would produce a better match to memory and faster responses.
(p. 183)” It is difficult to distinguish this proposal from that of Masson (Masson, 1991;
Masson, 1995) or Sharkey (Sharkey, 1989; Sharkey & Sharkey, 1992). Like the Masson and
Sharkey & Sharkey models, we consider compound-cue accounts to be a viable explanation



for short time-scale priming effects, complementary to our account of long time-scale effects.

Conclusions

Our view of long-term priming as incremental learning differs from previous accounts of
short-term semantic/associative priming in the literature that involve transient effects like
residual activation or expectancy generation. These accounts were developed to explain
short-lived effects like priming by associatively-related words (e.g. BREAD and BUTTER).”
Such processes may help the cognitive system to process language rapidly by preparing it
for what is likely to occur next, on the basis of the current context (but see Hess et al.,
1995). Long-term learning, in contrast, is presumably necessary to lay down cumulative
memory traces of what a person has experienced over a lifetime. This view suggests that
long-term priming reflects the normal course of learning. Presumably these different short-
and long-term mechanisms would act in concert in a complete cognitive system.

The data reported here highlight the value of combining modelling and experimental ap-
proaches to developing theoretical accounts of cognitive processes. Having a computational
model allows us to postulate in a precise and specific way the mechanisms that may underly
long-term priming. The process of building our priming model led us to make novel predic-
tions about long-term semantic priming, which we were then able to confirm experimentally.
In our simulations, we have undoubtedly used a highly oversimplified representation of hu-
man semantic memory, as well as of the semantic learning process. Thus, we could not hope
for exact quantitative agreement with human data. However, for the most part we were
able to obtain good agreement between our qualitative pattern of simulation results and
the pattern of priming in human participants. From this we can conclude that the model
did capture the essential aspects of orthographic and semantic memory organization that
are relevant to the lexical and semantic decision tasks. Thus, the general approach appears
to be promising as a way of bridging the gap between neural modelling and experimental
approaches to understanding human cognition.
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Table 1. Mean settling times (ST) and error rates (%) (with
standard errors) for Simulations 1 and 2

Network performance measure
Orthographic ST | Semantic ST | % Errors

Simulation 1
Unrelated 23.16 (2.0) | 33.04 (2.1) | 10 (3.6)
Related 22.03 (1.0) | 32.03(1.9) | 5 (1.7)
Simulation 2
Unrelated 92.73 (1.9) | 33.87 (2.5) | 9 (3.7)
Related 2262 (1.8) | 33.27 (2.4)| 9 (3.9)




Table 2. Mean reaction times (ms) and error rates (%) (with
standard errors) for Experiments 1 and 2

Task
Lexical decision ‘ Semantic decision

Experiment 1
Unrelated

RT 597 (18) 759 (23)

Error 2 (0.7) 5 (1.0)
Related

RT 587 (18) 716 (24)

Error 3 (0.8) 6 (1.0)
Experiment 2
Unrelated

RT 709 (23)

Error 6 (1.1)
Related

RT 674 (20)

Error 6 (1.2)




Table 3. Mean animacy decision times (ms) and error rates (%)
(with standard errors) for Experiment 3

Lag
0 Ttems ‘ 4 Ttems ‘ 8 Ttems

Unrelated
RT 868 (36) | 859 (28) | 883 (32)
Error | 9 (1.8) | 10 (2.0) | 10 (1.7)

Related
RT 776 (18) | 817 (23) | 812 (30)
Error | 10 (2.2) | 6(1.8) | 8 (1.8)




Figure Captions

Figure 1: The architecture of the network. Arrows indicate full connectivity amongst units
within or between groups. All connections are bi-directional. There were 40 units in each
hidden layer, 28 orthographic units, 33 phonological units, and 68 semantic units.

Figure 2.: Plot of the unrelated minus the related settling times (cycles) for the orthographic
and semantic layers in Simulations 1 and 2, and the unrelated minus the related reaction
times (ms) for lexical and animacy decisions in Experiments 1 and 2. Each bar represents
the standard error of the priming effect.

Figure 3: The free energy is plotted against the state of the network before and after priming
with a) an unrelated word, and b) a related word. Each point along the x axis represents a
single point in the high-dimensional network state space. The two end points on the x-axis
of each graph represent the state the network is in when it recognizes the words shown. The
intermediary points represent the states of the network along a direct path between the two
end states. The distance along the y-axis represents the energy. The difference between the
upper and lower curves represents the priming effect for repetition priming (left end) and
semantic priming (right end).

Figure 4.: Plot of the unrelated minus the related reaction times (ms) across prime-target
lags for animacy decisions in Experiment 3. The bars represent the standard error of the
priming effect.
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Appendix A: Simulation details

Pattern presentation

For each pattern presentation, during both learning and testing/priming sessions, the states
of the units were updated repeatedly for a number of time steps until the network reached a
stable attractor. At each time step, ¢, each unit’s state, y;(¢), was updated according to the
following equation:

yi(t) =it = 1) + alo(@:()/T) = yi(t = 1)]

where « is fixed state adaptation rate parameter, o(z;) is the activation function (a nonlin-
ear function of the weighted summed input z; = 3°; w;;y;(t)) and T is the “temperature”
parameter of the DBM. In our simulations o was 0.4., and for the activation function we
used the hyperbolic tangent non-linearity:

et —e®

0= e

an S-shaped function producing real-valued continuous activations ranging from -1 to 1. In
the learning and energy equations (described below) we shifted and scaled the activations
to range from 0 to 1 so that they could be interpreted as probabilities. This function is
commonly used in connectionist models with non-linear units. Another common choice of
non-linearity is the sigmoid function: o(x) = H% which is nearly identical in form. The
temperature parameter scales the total input to units, and thereby determines the slope of
the activation function. Its purpose is explained in the next paragraph.

The Boltzmann machine is similar to a Hopfield network (Hopfield, 1982; Hopfield, 1984)
in that both use symmetric connections and Hebbian learning rules to store patterns as
attractors. Two major problems with the Hopfield network are its poor storage capacity
and the fact that it can settle into “blend states” - attractors that do not correspond to
any stored patterns. The Boltzmann machine overcomes these two problems respectively by
its learning rule, described in the next sub-section, and by using a procedure called simu-
lated annealing (Kirkpatrick et al., 1983) to update the states until a low-energy attractor is
reached. Simulated annealing works as follows: Each time a pattern is presented to the net-
work, the unclamped units are initialized to intermediary states of 0.0, and the temperature
parameter is set to a high initial value; at this high temperature, the slope of the activation
function is nearly flat so units’ states are relatively insensitive to their total inputs. Units
states are then gradually updated for many iterations. At each iteration, 7" is decayed by
some factor, until it has reached a minimum value. This annealing procedure helps prevent
the network from becoming trapped in poor local minima. In our simulations, the initial
temperature was 30, the decay factor was 0.9 and the final temperature was 1.0. State up-
dates continued until no unit had changed its state by more than 0.00001 from one iteration



to the next. These parameter values were determined empirically to produce reasonably fast
and continuous convergence to an energy minimum.

Soft-clamping of the orthographic units’ states was achieved by adding an extra connec-
tion with a large fixed weight to each orthographic unit, and passing the external input in
along this connection. The weights on these extra connections were fixed at 2.0, so that each
orthographic unit’s state would be influenced predominantly by the external input, but also
to some degree by the activations of units in the other layers in the network. We did not
experiment with this choice of fixed weight. However, during learning the network was free
make the other weights arbitrarily large, so the choice of the external weight value became
less relevant as learning proceeded.

Learning

In a standard DBM, the weight update for each connection is computed according to a
contrastive Hebbian learning rule (Peterson & Anderson, 1987) which involves two phases
for each training pattern. In the positive phase the states of both the input and output units
are clamped to their correct values, the input vector and desired output vector or training
signal respectively. The hidden unit states are then repeatedly updated until they settle to
stable values. Positive Hebbian learning then occurs:

wij(t) = wi(t — 1) + eyi(t)y;(2)

where ¢ is the learning rate. Thus, weights on connections between strongly co-active units
are strengthened. In the negative phase only the input units’ states are clamped; the rest
of the network settles into an attractor state that may or may not be the correct response,
and this response is “unlearned”:

wi;(t) = wii(t — 1) — eyi(t)y;(t)

Thus, weights on connections between strongly co-active units are weakened. Eventually,
learning in the two phases converges to a net effect of zero once the network has learned
to produce the correct output states in response to the corresponding clamped input states
in the negative phase. For efficiency of learning, the network was first trained for 2000
sweeps through the training set of 40 patterns, exactly in the manner described by Plaut
& Shallice (1993a), using hard-clamping of inputs. The learning rate for each unit during
this initial training phase was .01/ fanin;, as in the Plaut and Shallice simulations (David
Plaut, personal communication) where fanin; is the number of incoming connections to the
1th unit. Thus, each unit’s learning rate was scaled by its fanin. For each training pattern,
the network was trained to map from orthography to the correct semantics and phonology,
from semantics to the correct orthography and phonology, and from phonology to the correct
semantics and orthography. Thus, each learning iteration involved one positive phase, hard-
clamping the O, S and P layers, and three negative phases, leaving the O and S layers, the
P and S layers, or the O and P layers unclamped. The network was then trained for an



additional 1500 sweeps through the training set using soft-clamping, with a fixed learning
rate for all units of 0.00001, and this time it was only trained to map from orthography to
semantics and phonology. During this latter training stage, zero-mean noise with a standard
deviation of 0.05 was added to the orthographic inputs upon each pattern presentation.

Free Energy

Hinton (1989) showed that the DBM learning procedure performs minimization by steepest
descent in the Boltzmann Free Energy, F', which is defined in terms of the energy E and
entropy H of the system as follows:

F = E-TH
1
= —5 vy — T3 (uilogyi + (1 — wi) log(1 — 1)

It is this quantity that we plotted in Figure 2, where ¢ and j indexed over all pairs of
connected units in the entire network.



Appendix B: Hinton and Shallice’s 40 words
and semantic features

indoor | animals | body | food outdoor
objects parts objects
BED BUG BACK | BUN BOG
CAN CAT BONE | HAM | DEW
COT COW GUT | HOCK | DUNE
CUP DOG HIP LIME | LOG
GEM | HAWK | LEG NUT MUD
MAT PIG LIP POP PARK
MUG | RAM PORE | PORK | ROCK
PAN RAT RIB RUM | TOR




Semantic features

max-size-less-foot
main-shape-2D
cross-section-rectangular
has-legs

white
color-other-strong

dark

sweet

moves

indoors

in-livingroom
in-country
found-near-streams
part-of-limb
above-waist

mammal

does-fly

living

made-of-metal
made-of-other-non-living
pleasant

man-made

for-cooking

used-alone

for-snack
particularly-assoc-child
human

max-size-foot-to-two-yards
main-shape-3D
cross-section-circular
otherwise-supported
brown

varied-colors

hard

tastes-strong

in-kitchen
on-ground
found-woods
found-mountains
surface-of-body

wild

does-swim
carnivore
made-of-wood
got-from-plants
unpleasant
container
for-eating-drinking
for-breakfast
for-drink
particularly-assoc-adult
component

max-size-greater-two-yards

green
transparent
soft,

in-bedroom
on-surface
found-near-sea
found-on-farms
interior-of-body

fierce
does-run

made-of-liquid
got-from-animals
for-other

for-lunch-dinner

used-for-recreation




Appendix C: Stimuli for Experiments 1 & 2

List A List A List B List B

Prime: Target: | Prime: Target: || Prime: Target: | Prime: Target:
whale shark | cotton silk minute hour auger drill
dolphin rayon second borer

fish linen week chisel

porpoise satin month reamer

salmon velvet day pliers

foot mile coat shirt waterway  river ruby jade
inch pullover stream emerald

yard sweater channel sapphire

meter dress brook topaz

kilometer blouse creek amethyst

cherry grape | stool chair knife spoon | tulip rose
plum seat fork daisy

lime bench ladle violet

raisin recliner silverware orchid

melon throne cutlery pansy

mansion  home shuttle train COwW sheep portal door
house railway lamb entranceway
abode freighter goat gateway

dwelling subway mutton window

lodging streetcar mule closet

robin dove louse roach aluminum steel whiskey beer
swan flea copper pilsner

pigeon hornet iron stout

eagle parasite zinc lager

canary vermin chrome ale

lentil bean manuscript book dollar dime knife spear
broccoli novel nickel skewer

pea journal quarter dagger

legume paperback penny sword

spinach document coin lance

flurry Snow salt spice zither harp evergreen pine
blizzard pepper lute birch

sleet seasoning guitar spruce

slush flavoring cello cedar

frost savory piano balsam

pontoon  raft paw hand

surfboard foot

buoy mitt

float palm

ferry fingers




Appendix D: Stimuli for Experiment 3

Practice Stimuli

Prime-Target Stimulus Pairs

Filler words

board
butter
lettuce
chasm
cabin
crab
bacteria
cord
priest
frost
hall
jury
gem
officer
oven
person
lizard
shadow
salute
square

fate
infant
foam
iceberg
wasp
mistake
sorcery
filth
pig
cushion
sound
odour
marsh
frog
kleenex
agony
fire
bush
robber
shore
melody
octopus
shrine
pledge

destiny
baby
froth
glacier
hornet
error
magic
dirt
swine
pillow
noise
scent
swamp
toad
tissue
pain
flame
shrub
thief
beach
song
squid
altar
promise

snare
demon
tack
plate
bison
rug
rifle
bucket
book
mist
prison
home
monkey
ladle
desk
wolf
oyster
boat
hawk
mouse
snake
student
grass
sheep

trap
devil
pin
dish
buffalo
carpet
gun
pail
novel
fog
jail
house
ape
spoon
table
dog
clam
ship
eagle
rat
serpent
pupil
lawn
lamb

stuff
blood
ant
bear
fight
aardvark
muffin
mushroom
shark
paste
rose
robin
stone
apple
rope
germs
fly
grape
weed
under
coral
soap
chief
doctor

fun
mildew
skunk
carrot
moss
goldfish
young
cactus
mule
gopher
cucumber
parrot
folder
pill
frame
trout
lobster
iguana
bottle
shelf
clock
kite
bone
daisy




