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Abstract

B Several decades of research into the function of the frontal
lobes in brain-damaged patients, and more recently in intact
individuals using function brain imaging, has delineated the
complex executive functions of the frontal cortex. And yet, the
mechanisms by which the brain achieves these functions
remain poorly understood. Here, we present a computational
model of the role of the prefrontal cortex (PFC) in controlled
memory use that may help to shed light on the mechanisms
underlying one aspect of frontal control: the development and
deployment of recall strategies. The model accounts for
interactions between the PFC and medial temporal lobe in
strategic memory use. The PFC self-organizes its own
mnemonic codes using internally derived performance meas-
ures. These mnemonic codes serve as retrieval cues by biasing
retrieval in the medial temporal lobe memory system. We
present data from three simulation experiments that demon-
strate strategic encoding and retrieval in the free recall of
categorized lists of words. Experiment 1 compares the
performance of the model with two control networks to

INTRODUCTION

People have a remarkable ability to encode and retrieve
information in a flexible manner. Understanding the
neuronal mechanisms underlying strategic memory
use remains a true challenge. Neural network models
of memory have typically dealt with only the most basic
operations involved in storage and recall. The goal of
this work is to develop a computational model that will
shed light on the neural mechanisms underlying strate-
gic memory use in individuals with intact and lesioned
frontal lobes. In the simulations reported here, we
focus on a particular task, the free recall of lists of
related words.

Evidence from patients with frontal damage indicates a
crucial role for the prefrontal cortex (PFC) in the control
of memory. The task that characterizes best the memory
impairment of patients with frontal lobe damage is word
list learning, in which free recall is impaired dispropor-
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evaluate the contribution of various components of the model.
Experiment 2 compares the performance of normal and
frontally lesioned models to data from several studies using
frontally intact and frontally lesioned individuals, as well as
normal, healthy individuals under conditions of divided
attention. Experiment 3 compares the model’s performance
on the recall of blocked and unblocked categorized lists of
words to data from Stuss et al. (1994) for individuals with
control and frontal lobe lesions. Overall, our model captures a
number of aspects of human performance on free recall tasks:
an increase in total words recalled and in semantic clustering
scores across trials, superiority on blocked lists of related items
compared to unblocked lists of related items, and similar
patterns of performance across trials in the normal and
frontally lesioned models, with poorer overall performance
of the lesioned models on all measures. The model also has a
number of shortcomings, in light of which we suggest
extensions to the model that would enable more sophisticated
forms of strategic control. Wl

tionately relative to recognition performance (Stuss et al.,
1994). Patients with frontal damage are impaired partic-
ularly on tasks requiring context-specific recall such as
AB-AC list learning (Shimamura, Jurica, Mangels, Gersh-
berg, & Knight, 1995), on tests of memory for temporal
order (Shimamura, Janowsky, & Squire, 1990), and in
tasks in which normal subjects would tend to make use
of self-generated recall strategies. For example, when the
task is to memorize a long list of words, people normally
benefit from the categorical structure of the list, recalling
more items from related lists than from unrelated lists
(e.g., Bousfield, 1953). A key performance index in these
tasks is categorical clustering—the tendency to recall
items from the same taxonomic category consecutively at
greater than chance levels. The California Verbal Learn-
ing Test (CVLT) (Delis, Kramer, Kaplan, & Ober, 1987) is
a standardized version of this task, in which 16 words
drawn from four categories are presented aurally in a
mixed order for five repetitions with recall tested after
each list presentation. On CVLT-like tests, whereas
frontal patients do benefit from the categorical structure
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of word lists (Stuss et al., 1994; Jetter, Poser, Freeman, &
Markowitsch, 1986), they tend to recall fewer categories
in total, especially when tested after long delays, and in
some cases they have lower semantic clustering scores
(Hildebrandt, Brand, & Sachsenheimer, 1998; Jetter et al.,
1986). The latter effect may depend on how obvious the
categorical structure is (Moscovitch, 1994). Individuals
with frontal lesions also recall fewer words in total,
exhibit lower serial clustering scores, show less consis-
tency in words recalled across trials, and make more
intralist repetitions and intrusions from previously stud-
ied lists (Hildebrandt et al., 1998; Stuss et al., 1994).
Healthy individuals performing a concurrent interfering
task during both study and recall, a manipulation
thought to disrupt frontal control functions, also recall
fewer items and exhibit less categorical clustering (Mos-
covitch, 1994). These data support the view that the PFC
is required to employ temporal context, organize infor-
mation, and form retrieval strategies dynamically.

We propose that one of the functions of the PFC is to
develop mnemonic codes rapidly according to task
demands, driven by a reinforcement learning process.
The reinforcement is derived from self-monitoring of
performance relative to one’s current motivational state
and goals. These self-organized mnemonic codes can act
as selective retrieval cues to the medial temporal lobe
memory system.

The postulated role of the PFC in rapid self-organiza-
tion of new internal codes is broadly consistent with
Duncan’s (2001) view of the PFC as a dynamic learning
system, and Frith’s (2000) view of the dorsolateral PFC
as “sculpting the response space.” According to Frith,
the dorsolateral PFC is responsible for the selection
of appropriate actions when there are many possible
alternative responses, rather than when an automatic
response would be made. It is involved in forming
arbitrary new categories of items, by enhancing some
attributes while inhibiting others.

We have developed a connectionist model of the
performance of intact and frontally lesioned individuals
on free recall tasks that embodies the above assump-
tions. Our simulations show that a form of strategic
control of memory emerges in a relatively simple
neural network capable of rapid and highly flexible,
reinforcement-driven learning. We have attempted to
construct the simplest possible model that could exhibit
strategic recall. Therefore, rather than building in fixed
strategies, predefined retrieval cues, or component pro-
cesses such as working memory, our model self-
organizes its internal representations in the prefrontal
module. They may persist over time, thereby providing a
constraining context for retrieval.

Our model of controlled memory use combines a
lexical/semantic memory (LSM) module, a medial tem-
poral lobe memory (MTL) module, and a prefrontal
cortical (PFC) module, as shown in Figure 1. We briefly
describe the operation of our model here; details are
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provided in the Methods section. Activity flows bottom-
up through the model during the processing of exter-
nally presented stimuli (Figure 1A) and top-down during
memory retrieval and response generation (Figure 1B).
When an externally presented word is processed by the
model, the item activates a set of lexical and semantic
features in the LSM module, which are associated with
the current context into an episodic trace in the MTL
module, and also encoded in the PFC module (see
Figure 1). The context signal is a slowly varying random
vector, representing the current internal state of an
individual. The idea of a random or gradually evolving
context vector has appeared in many previous memory
models (e.g., Howard & Kahana, 2001; Brown, Preece, &
Hulme, 2000; Murdock, 1997; Burgess & Hitch, 1992,
1996). During free recall, the previously recalled item
activates the PFC, which cues the MTL module to recall
an episodic trace, and activates a candidate word re-
sponse in the LSM module. The model uses a ‘“‘generate-
and-test” strategy: The recency of the recalled item is
evaluated by probing the MTL module with the recalled
item combined with the current context. If the recency is
too high, the item is assumed to be a repetition error,
whereas if the recency is too low, an intrusion error is
assumed. Otherwise, a response is generated and a new
episodic trace of the recalled word in the current context
is stored in the MTL module.

The key to our model’s ability to perform strategic
recall is in its learning mechanism. Whereas the LSM
and MTL modules are trained via simple Hebbian
learning, the PFC representation is learned rapidly
according to task demands, based on self-monitoring
of the model’s memory-retrieval performance. The PFC
module receives a reward signal when nonrepeated
study list items are retrieved, and a punishment signal
when nonlist or repeated items are retrieved. Occasion-
ally, a repetition or intrusion error may go undetected
by the model, resulting in a recall error. The model
thereby learns to develop retrieval strategies dynamically
in the course of both study and free recall of words.

Two processing constraints were added to the model
to facilitate strategic learning in free recall. The first was
motivated by primate PFC unit recording studies indi-
cating sustained activations correlated with task-related
working memory and response preparation (e.g., Con-
stantinidis, Franowicz, & Goldman-Rakic, 2001). Thus,
the PFC units in our model each had a “fast bias” that
implemented a sustained response switch gated by
reinforcement. A unit could thereby increase its bias
over trials when repeatedly reinforced, and quickly
reverse to a negative bias when a retrieval error is
detected. Second, a response-suppression mechanism
was included to prevent the same lexical unit being
immediately recalled again. This was motivated by evi-
dence for inhibition of return in visuospatial search tasks
(Posner, Rafal, Choate, & Vaughan, 1985) and response
suppression in serial recall tasks (e.g., Lewandowsky &
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Figure 1. The architecture of
the neural network model. The
network used here had 800 LSM
units, 300 context units, 1600
MTL units, and 10 PFC units
(labeled “‘response units” in the
figure). The PFC units received
as input delayed copies of the
LSM and MTL outputs (labeled
“WM units” in the figure).
Filled arrows indicate a reinfor-
cement signal, which modulates
the learning in all connections
to, from, and within the PFC
module. Arrows labeled

“delay = 1” indicate pathways
along which information from
the previous time step is trans-
mitted. (A) Bottom-up flow

of activation during perception
of an external stimulus. (B) The
top-down flow of activation
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Duncan, 2002; Vousden & Brown, 1998). Response sup-
pression has been incorporated in nearly all models of
serial recall and serial response generation (e.g., Farrell &
Lewandowsky, 2002; Brown et al., 2000; Vousden, Brown,
& Harley, 2000; Burgess & Hitch, 1999; Henson, 1998;
Page & Norris, 1998; Houghton & Hartley, 1996; Lew-
andowsky & Murdock, 1989). The fast bias and response-
suppression mechanisms allowed the model to develop
temporally persistent mnemonic cues in the PFC layer,

while permitting a range of different responses to the
same mnemonic cue, without response perseveration.
In three simulation experiments the model was tested
on CVLT-like tasks with lists of 16 words for five study-
recall trials. In Experiment 1, the model’s correct recall
and error scores are compared to that of two control
networks, one lacking the response suppression, and
the other lacking the fast bias for the PFC units. Exper-
iment 2 examines the effect of frontal lesions on the
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Figure 2. Number of total words correctly recalled by the full model
and two control networks across five recall trials in a CVLT-like task,
averaged over 50 runs. One control network, labeled “no word IOR,”
lacked response suppression/inhibition of return, and the other,
labeled “no fast bias,” lacked the rapidly learned, reinforcement-
driven bias.

model; correct recall and semantic clustering scores are
compared to human data from three experiments: Mos-
covitch’s (1994) CVLT data for healthy subjects in con-
trol and divided attention conditions, and data from two
studies of frontally lesioned individuals (Hildebrandt
et al., 1998; Stuss et al., 1994). Experiment 3 extends
these results by examining the model’s performance on

blocked and unblocked categorized lists of words, as
well as lists of unrelated words. The results are com-
pared to those of Stuss et al. (1994) for humans with
control and frontal lobe lesions.

EXPERIMENT 1: RESULTS AND DISCUSSION

As shown in Figure 2, for all networks, recall increased
over trials, with the greatest amount of learning in the
first two trials. The full model learned to recall on
average 11 to 12 of the 16 words by the fifth trial.
However, the networks lacking either the fast bias in
the PFC layer or the response suppression recalled
considerably fewer words and had shallower learning
curves. A one-way analysis of variance (ANOVA) revealed
a significant main effect of the network architecture on
total words recalled correctly, F(2,147) = 3524, p <
.001. All post hoc pairwise comparisons between correct
scores for the three network types using Bonferroni-
corrected ¢ tests were significant (p < .001).

Figure 3 shows average repetition and intrusion error
rates summed across the five trials. Without response
suppression, the model makes many more repetition
errors—both detected (hits) and undetected (misses).
Intrusion error rates (bottom, Figure 3), relative to the
total number of words recalled correctly (top, Figure 3),
were similar across networks.

Sample responses generated by the full network in a
typical recall session after five study sessions are shown
in Table 1. In this case, 12 words were recalled, and 7 of
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Table 1. Responses Produced by the Model during a Typical Recall Session

Word Recalled Most Active PFC Unit Recency in MTL Intrusion Error Repetition Error Repeated Category
Jacket 5 36.5

Sweater 5 31.2 *
Slacks 5 41.8 &
Apricots 10 34.5

Tangerines 10 30.9 *
Grapes 9 274
Plums 9 24.7 *
Pliers 2 30.9

Wrench 2 28.2 *
Chisel 2 31.2
Chives 7 22.6

Grapes 1 33.6 *

XXXX 3 0.9 *

those constituted categorical repetitions, yielding a clus-
tering score of 7 for that session. Note that sustained
responses by an individual PFC unit are associated with
categorical clustering. The recency of each recalled
word, a function of the match between the recalled
word and the stored weights in the MTL module, tends
to decrease with each successively recalled word, as the
time since the word was studied increases. In this case
the network generates one undetected repetition error,
“grapes,” whose recency is not sufficiently higher than
the last few words recalled so that it would be flagged as
an error. The very last word recalled in a session is
always a detected error, and terminates the trial when
the model cannot generate any valid items. In this
example, the final word recalled is an intrusion error,
detected by its extremely low recency.

Neither control network showed this pattern in the
PFC layer. The control network lacking the fast bias in the
PFC layer sometimes would alternate amongst activating
two or more different PFC units; it failed to develop the
strategy of a sustained response in the PFC layer over
several recalls that would permit clustered recall. On
other occasions, this same network activated the same
PFC unit for the duration of the recall session, failing to
develop the strategy of switching PFC units after detect-
ing an error. The control network lacking response
suppression made many detected repetition errors (see
Figure 3); each time such an error was detected, the
network recovered by switching to a different PFC mne-
monic unit. There was therefore no consistent pattern in
the sequence of PFC units activated.

To summarize, the full model was able to learn a
clustered recall strategy for the CVLT task. Both the fast
bias in the PFC layer and the response suppression in
the word unit layer played crucial roles in the develop-

ment of this strategy, the former allowing the model to
develop sustained categorical retrieval cues, and the
latter preventing response perseveration in the face of
a sustained retrieval cue.

EXPERIMENT 2: RESULTS AND DISCUSSION

Both the normal and frontally lesioned networks’ recall
and categorical clustering scores increased over trials
(Figures 4 and 5). Lesioning one third of the incoming,
outgoing, and internal PFC layer connections degraded
the recall performance (Figure 4), as confirmed by a
one-way ANOVA of the effect of the lesion on the total

Model performance on CVLT-like test

Total words recalled
(o)
T

Intact
O~ Lesioned

5

N
w
IN

Figure 4. Total words recalled correctly in a test of free recall on
a CVLT-like task, averaged over 50 runs, with standard error bars,
for intact models and models with lesions to the PFC module.
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Figure 5. Categorical cluster- . .
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words recalled by each simulated subject, F(1,98) =
127.6, p < .001.

The simulated frontal lesion also affected the amount
of categorical clustering (Figure 5) as revealed in a one-
way ANOVA, F(1,98) = 59.6, p < .001. The categorical
clustering score shown here is simply the total number
of words recalled from the same category as the pre-
ceding word. This measure does not correct for the fact
that recalling fewer words lowers the maximum possible
clustering score. The maximum possible clustering score
on a given trial is 3/4 of the total words recalled, because
there are four words per category in the study list, and
four words successively recalled from the same category
would yield an uncorrected score of 3. Dividing the
clustering score by the maximum possible clustering
value given the total words recalled yields a corrected
clustering score with a maximum possible value of 1.
The corrected clustering scores on the first and last trial
were .36 and .46 for the intact network, and .19 and .41
for the lesioned network. Thus, the normalized cluster-
ing score increases over trials for both networks, and is
somewhat lower for the lesioned network.

Although the overall effect of the frontal lesion was to
lower performance, the lesioned model could not be
said to have a learning impairment per se; both recall
and clustering scores increased over trials at roughly the

same rate as for the intact model. The reduced recall and
clustering in the frontally lesioned group, with relatively
intact learning slopes for both measures, is suggestive of
an impairment in the strategic use of memory.

The above results are broadly consistent, at least
qualitatively, with the performance on CVLT-like tests
of neurologically intact and frontally challenged humans.
Quantitative comparisons are complicated by the fact
that several factors vary across studies, including word
lists and hence word similarity, number of study/test
trials, and performance measures. We therefore compare
our models’ recall performance to the results of three
different studies (see Table 2). Stuss et al. (1994) admin-
istered a CVLT-like test, but with only four study/test
trials rather than the standard five, to patients with left,
right, and bilateral frontal as well as nonfrontal control
lesions; we have shown here data from their control
lesion and bilateral frontal lesion groups only. Hilde-
brandt et al. (1998) used a German version of the CVLT
and groups with left frontal lesions, left medial-temporal
lobe lesions, and right-hemisphere control lesions. Mos-
covitch (1994) administered the standardized CVLT to
neurologically intact individuals under conditions of
divided attention, which is thought to disrupt executive
control. Moscovitch’s data reported in Table 2 were
estimated from Figure 1 (Moscovitch, 1994); in this case,

Table 2. Free Recall Scores and Standard Deviations on CVLT-like Tasks for Computational Model (Experiment 3) and

Human Data

Control Group

Frontal Group

Data Set Trial 1 Trial 2 Total Trials Trial 1 Trial 2 Total Trials
Model 4.4 (3.3) 9.5 (3.0) 47.2 (6.5) 2.6 (1.8) 55 (2.9) 29.8 (8.7)
Stuss et al. (1994) 38.1 (9.5) 259 9.7
Hildebrant et al. (1998) 5.8 (1.5) 127 (1.7) 51.3 (6.75) 3.8 (1.3) 8.6 (2.5) 31.9 (6.9)
Moscovitch (1994) 6 10 4 7
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“frontal” refers to Moscovitch’s group with divided
attention during both study and recall.

Frontally challenged individuals show a similar pat-
tern of performance to that of the model with PFC
damage: relatively intact learning across trials, but lower
overall levels of recall. The model’s pattern of categor-
ical clustering across trials is very similar to Moscovitch’s
(1994) human data (see Figure 5), both qualitatively
and quantitatively.

Some differences between the model and human data
should be noted. The model’s performance is somewhat
higher on the first trial, and the learning curve is not
quite as steep as the human data reported by Hilde-
brandt et al. (1998) and Moscovitch (1994). Various
parameters of the training data and model, such as the
learning rates for the various layers of the network,
could be optimized to achieve much more accurate data
fits. However, our goal in building the model was not to
engage in a data-fitting exercise, but rather, to capture
key aspects of human performance qualitatively, with as
few built-in assumptions as possible, and subsequently
apply the model to other tasks.

EXPERIMENT 3: RESULTS AND DISCUSSION

Experiment 3 extends the findings in Experiment 2 by
comparing the model’s performance on blocked and
unblocked lists of categorized words, and lists of unre-
lated words. These results were compared to human data
on the same sort of lists reported by Stuss et al. (1994). A

two-way ANOVA of the effects of list type and lesion on
total correct scores revealed significant main effects of
lesion, F(1,294) = 252.6, p < .001, and of list type,
F(2,294) = 5.5, p < .004, and a trend toward a list by
lesion interaction, F(2,294) = 2.9, p < .057. For all list
types, the intact models’ learning slopes tended to be
slightly steeper, and the overall error rates were lower
than those of the lesioned models (Figure 6). Post
hoc pairwise comparisons between correct scores for
the three list types using Bonferroni-corrected ¢ tests
revealed significant differences between the recall of
blocked and unblocked lists, p < .05, and between
blocked and unrelated lists, p < .01, but not between
unblocked and unrelated lists. This is very similar to the
pattern of results Stuss et al. reported in comparing
free recall of frontal-lobe-lesioned individuals to those
with control lesions: poorer overall performance of the
frontal groups in all conditions, and regardless of lesion
site, superior recall of categorized lists when the words
are blocked by category, as compared to unblocked
or unrelated word lists, but no difference between
the unrelated and unblocked conditions (see Table 3).
Figure 6 shows the correct recall and categorical cluster-
ing scores of the normal and lesioned models on blocked
and unblocked lists, plotted over trials. Although the
differences in number of words recalled is relatively small
between the blocked and unblocked conditions, the
differences in clustering are quite large.

When one considers the magnitude of the blocking
effect on words recalled, which was very large in both of

Table 3. Total Words Recalled, Summed over Four Trials, and Standard Deviations, by Computational Model (Experiment 3) and

Human Subjects

Model Stuss et al., 1994 Data
Condition Control Lesioned Control Lesioned
Blocked categorized list 37.8 (6.2) 25.7 (8.3) 52.8 (9.6) 34.2 (13.9)
Unblocked categorized list 359 (5.9) 22.3 (6.8) 38.1 (9.5) 259 (9.7)
Unrelated list 33.3 (5.1) 23.9 (7.9) 35.3 (7.8) 25.5 (10.7)
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Stuss et al.’s (1994) patient groups and relatively small in
the simulations, the quantitative fit between the model
and human data is rather poor. One explanation for this
may be that when people are given blocked categorized
lists, the categorical structure is much more obvious and
may encourage them to rely upon previously learned
strategies, whereas our model has to discover its strategy
by trial and error.

GENERAL DISCUSSION

Our model captures two key elements of strategic
control not present in previous models, namely, the
self-organization of mnemonic codes, and the ability to
employ these mnemonic codes as memory cues in free
recall tasks. When the PFC module is lesioned, the
model performs similarly to humans with frontal lesions
on CVLT-like tasks: There is no pronounced learning
impairment, but fewer words are recalled and there is
less categorical clustering, suggesting a deficit in strate-
gic memory use.

Although the model can simulate some aspects of
strategic memory use, it lacks many of the hallmark
features of executive control that would be required to
enable more complex strategies. For example, sequen-
tial strategies, while learnable in theory, are difficult for
our model to learn within the time scale of a single
experiment. It is likely that we learn this and other
strategies gradually over the course of a lifetime and
make use of them in new situations, rather than learning
strategies anew every time as the model does. The ability
to order responses sequentially might also be aided
by unique architectural features of the PFC. Some
computational models have incorporated architectural
constraints that would facilitate the sequential orga-
nization of responses (e.g., Dehaene & Changeux,
1997; Bapi & Levine, 1994). Further research is needed
to address other aspects of executive control, such as
goal establishment, self-monitoring, task decomposition,
and multitasking.

A number of other computational models of PFC
involvement in memory have been proposed, though
none has addressed the strategic use of memory in free
recall and similar tasks. Some models have addressed
specific component processes of frontal executive func-
tions, such as maintaining state information in working
memory (Dreher, Guigon, & Burnod, 2002; Rougier &
O’Reilly, 2002; Durstewitz, Seamans, & Sejnowski, 2000;
Moody, Wise, Pellegrino, & Zipser, 1997) and response
sequencing (Dehaene & Changeux 1997; Bapi & Lev-
ine, 1994). Several models have accounted for both
context maintenance and response selection/response
inhibition, e.g., in the Wisconsin Card Sorting task
(Berdia & Metz, 1998; Levine & Prueitt, 1989), Stroop
interference task (Cohen, Dunbar, & McClelland, 1990),
verbal response selection tasks (Gullapalli & Gelfand,
1995), delayed response tasks (Guignon, Dorizzi, B.,
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Burnod, Y., & Schultz, 1995; Dehaene & Changeux,
1989), and continuous performance tasks (Rougier &
O’Reilly, 2002; Braver, Barch, & Cohen, 1999; Cohen,
Braver, & O’Reilly, 1996). In most of these models, PFC
units are given prespecified meanings, e.g., “sort cards
by color” or “name the ink color.” In contrast, our
model adaptively discovers the best way to represent
context, by self-organizing its internal representations
of context according to task demands. Only two other
PFC models we are aware of, by Rougier & O’Reilly
(2002) and Guignon et al. (1995), support self-organized
internal representations. While each of these models
has several features in common with the PFC compo-
nent of our model, they focus on modeling the main-
tenance in working memory of task-related variables.
We address a rather different problem here: the self-
organization of entirely new mnemonic codes, which
may involve chunking or categorization of stimulus
features, in the service of controlled memory storage
and retrieval, and PFC interactions with the medial
temporal lobes.

An important assumption in our model is that strate-
gic learning occurs not only during study, but also
during free recall: The model’s recall strategy is dynam-
ically organized and shaped by feedback from self-mon-
itoring processes. Our model therefore predicts that
strategic recall would be compromised if one were given
multiple study episodes without the opportunity to
recall after each study trial. This prediction is currently
under investigation. Moscovitch (1994) found that sub-
jects who performed an interfering task during both
study and recall were impaired on the CVLT, whereas
those who performed the interfering task at either study
or recall alone were not. Our model predicts that either
form of interference alone should affect performance.
However, it is possible that Moscovitch’s finger-tapping
task was not sufficiently distracting to prevent strategic
learning altogether.

Another important assumption in our model is that
self-monitoring in free recall is reliant upon an intact
MTL memory system. Individuals with MTL lesions
should therefore have difficulty in employing a semantic
clustering strategy in free recall, as it would result in
large numbers of repetition errors. Interestingly, Hilde-
brandt et al. (1998) found that individuals with MTL
lesions (left posterior cerebral artery incident), like
those with frontal lesions, are very impaired on number
of words recalled, but in addition, the former have a
much greater tendency to use a serial clustering strat-
egy in free recall as well as showing highly inflated
recency effects.

The model described here could easily be extended to
accommodate other verbal learning tasks such as AB—
AC paired associate learning. The PFC module should
learn to represent the AB or AC list context during study,
and activate and maintain this context as a retrieval cue
during recall.
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METHODS
Architecture

The network used in all simulations reported here had
800 LSM units (100 lexical—the vocabulary size—and
500 semantic), 300 context units, 1600 MTL units (500
semantic and 300 context inputs, and an equal number
of outputs), and 10 PFC units. These layer sizes were
varied in preliminary simulations. Substantially fewer
semantic features resulted in poorer recall scores,
whereas fewer context features impaired the detection
of intrusion and repetition errors. The size of the PFC
layer was not critical; networks with 5 to 20 PFC units
performed comparably. Each layer in the model was fully
connected with the next layer, except that the input
units to the MTL input layer were connected 1:1. The
LSM and MTL inputs to the PFC units were delayed by
one time step, so that during recall, the PFC module
received context from the previously recalled word,
shown as “WM units” in Figure 1. During study, the
PFC units received nondelayed MTL input. The lesioned
models had 33% of incoming and outgoing PFC con-
nections randomly deleted. Varying amounts of damage
in preliminary simulations caused graded deficits, rather
than a steep drop at a critical level of damage.

Activation Rules

All units had binary (0, 1) states. The semantic, context,
and MTL layers were constrained to have sparse activa-
tion levels (25% of units active) via a K-winner-take-all
(KWTA) activation function. In the LSM word layer and
PFC layer, only a single unit was active at one time.
Before the experiments, the context units were intialized
to sparse random binary states. After a word was recalled
or studied, the context vector was gradually randomly
updated by swapping the state of each unit with that of
another unit with probability equal to .3 to maintain a
fixed level of activation.

During the study phase, activity propagated bottom-
up through the network (see Figure 1). An externally
presented study item determined the states of the LSM
units. The MTL input and output units’ states were
determined by the semantic and context features. In
the PFC module, a single unit was selected probabilisti-
cally to become active, according to the ‘‘softmax”
function (Bridle, 1990):

_exp(G x net;)
o > €xp(G x neyy)

where P; is the probability of selecting the 7th unit, G is a
gain parameter (here G = 100), and net; = Y ,W; ;y; +
b, + b,V s the weighted summed input to that
PFC unit, where y; is a presynaptic input activation, W; ;
is the weight on that connection, and 5,*'°" and
b,V are bias weights with small and very large
learning rates, respectively. The slow bias’ learning rate

was the same for the other weights, W, permitting
some PFC units to increase their response probability
across trials, whereas the fast bias was reset to zero
between recall trials. Each PFC unit was free to learn
task-appropriate weights on all of these connections
including the bias weights, so that it could in principle
learn to exert self-excitation after being rewarded, and
quickly switch to self-inhibition once the expected
reward failed to materialize.

During recall there was a top-down flow of activity
(see Figure 1). The PFC units’ states were calculated as a
function of the MTL and LSM module outputs from the
previous trial. On the very first recall attempt, this input
to the PFC represented the last word presented during
the study phase. The input to the MTL was a weighted
sum of the activations from the PFC layer, converted to a
binary code using a kWTA activation function. Before
propagating the activations through the MTL module,
the off state of the input layer units was set to
(—sparseness)/(1 — sparseness) rather than to zero; this
reduces the learning equations to simple Hebbian rules
(Willshaw & Dayan, 1990). The activation of the MTL
output layer was a kWTA function of the net input
from the MTL input layer. The activations of the LSM
module’s semantic feature units were simply a 1:1 copy
of the corresponding MTL output units’ activations. A
single word response was then generated probabilisti-
cally in the LSM module’s lexical layer, according to the
softmax function (with Gain = 200) of the weighted
inputs from the LSM semantic units.

To implement the response-suppression mechanism
in the word layer, the last four words recalled did not
enter into the softmax competition, and were thereby
prevented from becoming active. More realistically, this
could be simulated via self-inhibitory connections, or via
long-range plastic connections from the PFC layer acting
on local inhibitory interneurons. Recent neuropsycho-
logical evidence supports a role for the orbitofrontal
cortex in mediating reward-related inhibition of return
(Hodgson et al., 2002).

Because activations in the PFC and word layers were
noisy, the network was allowed up to three retries on a
given trial to generate a valid word response. After each
unsuccessful attempt, the fast bias weights in the PFC
layer were adjusted through reinforcement learning
using a negative reinforcement signal (see below). If a
successful recall attempt was made, a response was
generated, and all of the weights in the network were
adjusted with a positive reinforcement signal.

The model evaluated the recency of a recalled item by
probing the MTL module with the item just recalled,
combined with the current context. Recency is calculated
as the harmony, or negative of the energy (Hopfield,
1982) in the MTL module:

MTL) (MTL) (MTL
recency:ZKsz.(J >yl(. >y]( ).
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This was inspired by an idea of Joordens and Becker
(1997) to use harmony of a retrieved item as a measure
of familiarity. Recency is high when the probe closely
matches the stored memory patterns in the weights,
W%TL). If the same item is repeatedly recalled, recency
will be extremely high due to the close match to the
current context. Thus, a repetition error was detected
when the recency greatly exceeded that of the last few
recalled words (recency > averecency + 6) where the
average recency is updated after each recall by (1/3
recency) — (2/3 averecency). Similarly, an intrusion
error was detected if recency was too low (recency <
0.5 x averencency).

Vocabulary

The network was trained on a vocabulary of 100 words,
consisting of 16 CVLT “list words” drawn from four
categories with four words in each, and 84 extra-list
words. For each word, a set of semantic features was
generated randomly with 25% sparseness, such that
words within a category shared 40% of their features.
Of the 84 extra-list words, 20 words were drawn from
the same categories as the list words (but were not
studied during the CVLT experiment), 8 words formed
two new semantic categories containing 4 words each,
and the remainder were unrelated words.

Learning Rules

All weights were initialized to zero, except for PFC
weights, which were random between 0 and 1. The fast
bias PFC weights were reset to zero at the end of each
recall trial, and were fixed at zero during each study trial.

In a preexperimental phase, the LSM and MTL weights
were pretrained in a single pass through the entire
vocabulary of 100 words; for each vocabulary item, the
states of the LSM units were set to the corresponding
word features, and the lexical-to-semantic and reciprocal
connection weights were then incremented by the
following amount:

AW; ; = .005y;;

where y; and y; are the pre- and postsynaptic activities.
The MTL module formed an episodic trace of each
pretrained vocabulary item by autoassociating the vector
of semantic features and current context; the within-
MTL weights W; J(MTL) were updated via a Hebbian rule
with weight decay:

MTT)

W

= Decay X W/l.("ym

1 (input) (output)
+ o ML 7ML
where Decay = .96 and N is the MTL input layer size.
In this preexperimental phase, each word was asso-
ciated with a completely different random context in
the MTL module.
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During the experimental phase, the network studied
only the 16 CVLT list words, and the context was
changed gradually. The lexical-to-semantic and MTL
connection weights were updated via the same Hebbian
learning rules used in the preexperimental phase. The
connection weights for PFC units were trained via
Q-learning (Watkins, 1989), a version of reinforcement
learning in which an agent learns to predict the “value”
of each possible action in each situation. The value is
defined as the expected sum of future rewards, tempo-
rally discounted by a factor vy (here vy = 0.3):

Value(t) = 7, 4+ Y + Y7o+ oo Y T

We interpret each PFC unit’s net input net; = Value(?)
as its estimated value of taking that ‘“action” (or
retrieval cue, in this case). Thus, the softmax function
applied to this value probabilistically selects the PFC
unit that predicts the greatest reward. The actual
reward r received during free recall depends on the
model’s self-evaluation of the retrieved item: A non-
repeated list word results in # = +1.0, and the selected
PFC unit adjusts all of its weights. An intrusion or
repetition error results in » = —1.0, and only the fast
bias weight for the selected PFC unit is adjusted.
During the study phase the reward is held fixed at 1,
since the model was not permitted to generate a top-
down response during this time. The Q-learning rule
consists of a Hebbian term multiplied by a reward
prediction error:

W;.; = W, ; + lrate; ;PFC; y;error

where PFC; is the activation of the 7th PFC unit (1 if that
unit was selected to respond and 0 otherwise), y; is the
activation of the jth input to that unit (); = 1 for bias
weights), and lIrate;; is the learning rate for that
connection. The reward prediction error on the 7th trial
(Watkins, 1989) is:

error(i) = r(i + 1) + yValue(i + 1) — Value(7)

where Value(?) is the net input to the selected PFC unit
on the 7th trial. For all weights on connections from the
MTL to PFC units, the learning rate was 0.005. The top-
down weights from the PFC to the MTL were con-
strained to be equal to the corresponding bottom-up
MTL-to-PFC weights. For the PFC bias weights, the same
Q-learning rule was used with a large learning rate of
5 when » > 0, and 50 when » < 0.

Q-learning has the following important consequences:
(1) If more reward was received than expected, the
weights to the selected unit for active input lines are
increased, making that response to that input more
likely in the future. (2) If less reward was received than
expected, the same weights are decreased making that
response less likely.
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CVLT Procedure

Essentially the same procedure was used for Experiments
1, 2, and 3. Pretraining on the 100-word vocabulary was
followed by five interleaved study and recall trials using
the 16 simulated CVLT list words. At the start of each
study and recall trial, the context vector was updated for
five cycles, whereas after each word was recalled or
studied, the context vector was updated for only one
cycle, to generate a greater shift in context between than
within trials. In Experiments 1 and 2, the studied words
were always presented in an unblocked fixed order such
that no two successive words came from the same
category. In Experiment 3, in the blocked condition,
study words were grouped by category, and in the
unrelated condition, all study words were drawn from
different categories. Fifty different simulated “subjects”
were run in each condition, each with different random
initial weights.

In the standard CVLT procedure, a trial ends when the
subject cannot think of any more words. Similarly, in our
simulations, a trial typically ended when the network
could not generate any valid words. Although the net-
work was given a maximum of 20 chances to recall
words, it rarely if ever recalled more than 16 items,
because it was able to detect and suppress intrusion and
repetition errors with a high degree of accuracy.

The performance measures used were the total num-
ber of words recalled correctly, the number of intrusion
and repetition errors, and the categorical clustering
score. The latter was incremented each time a word
was recalled correctly from the same category as that of
the previously recalled word.
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