Journal of Applied Intelligence, 6, 185-205 (1996)

© 1996 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Unsupervised Neural Network Learning Procedures
For Feature Extraction and Classification*

SUZANNA BECKER
Department of Psychology, McMaster University, Hamilton, Ont. Canada L8S 4K1

MARK PLUMBLEY
Department of Computer Science, King’s College, London, Strand, London WC2R 2LS UK

Editors: F. Pineda

Abstract.

In this article, we review unsupervised neural network learning procedures which can be applied to the
task of preprocessing raw data to extract useful features for subsequent classification. The learning algo-
rithms reviewed here are grouped into three sections: information-preserving methods, density estimation
methods, and feature extraction methods. Each of these major sections concludes with a discussion of
successful applications of the methods to real-world problems.

Keywords: Unsupervised learning, self-organization, information theory, feature extraction, signal pro-

cessing

1. Introduction

One of the more difficult and important parts of
the classification process is the preprocessing of
raw data to extract useful and appropriate fea-
tures. The raw data are often too large or com-
plex to be used directly as input to a classifier,
leading to the ‘curse of dimensionality’ and other
generalization problems if insufficient training ex-
amples are available. Even when this is not the
case, simply reducing the number of variables rep-
resenting the data can make learning easier in a
later classifying stage. In some cases, prior knowl-
edge about the problem can be used to determine
heuristic features such as edges in an image clas-
sification problem. However, this is not possible
in all cases, and may not be the complete solution
in cases where such features are identifiable.

* The first author is supported by research grants from
the James S. McDonnell Foundation (grant #93-95) and
the Natural Sciences and Engineering Research Council of
Canada. For part of this work, the second author was sup-
ported by a Temporary Lectureship from the Academic
Initiative of the University of London, and by a grant
(GR/J38987) from the Science and Engineering Research
Council (SERC) of the UK.

In this article, we review unsupervised neural
network learning procedures which can be applied
to this preprocessing task. In contrast to either
supervised or reinforcement learning procedures,
these unsupervised algorithms use no knowledge
of the eventual targets or errors of the classifica-
tion process. They learn their eventual operation
purely from observing the raw input data.

The learning procedures reviewed here are
grouped into three main categories. In sec-
tion 2, we consider information-preserving meth-
ods. Here we cover principal component analysis
(PCA) and principal subspace methods, temporal
prediction of information, and independent com-
ponent analysis (INCA), as well as direct mini-
mization of information loss. In section 3 we con-
sider density estimation methods related to max-
imum likelihood parameter estimation. These in-
clude so-called “one-of-n” encodings, which may
be learned using various forms of competitive
learning, and more advanced combinatorial rep-
resentations. Finally, in section 4 we consider
methods which aim to extract higher-order fea-
tures from data, beyond the pre-processing stages
in a system. These include the extraction of max-

186 Becker and Plumbley

imally “selective” projections, the use of GMAX
to detect statistical dependencies in the data, ex-
traction of invariant features, and extraction of
spatially invariant features using Imax. Each of
these sections concludes with pointers to exam-
ples of applications for the techniques discussed
within the section.

2. Information preserving algorithms

In this section we consider learning systems which
attempt to preserve as much of the information in
the input data as possible, while performing some
simplification of the data such as dimension reduc-
tion. Since these unsupervised learning systems
have no access to eventual classification perfor-
mance, it is difficult to do anything other than at-
tempt to preserve all the information in the input.
The major part of this section considers principal
component analysis (PCA) methods, from single
component algorithms through to variants which
extract M components.

2.1. Principal component analysis and subspace
methods

Principal component analysis (PCA) is a pop-
ular dimension reduction and feature extraction
method. It appears in the literature under various
guises, including Factor Analysis [77], the discrete
Karhunen-Loéve transform (KLT) [26], and the
Hotelling Transform [28]. This variety of names
largely reflects its different applications.

Suppose that we have a zero-mean random vec-
tor x = [z1,...,znN] distributed with joint proa-
bility density p(x) and covariance matrix

w

Fig. 1. Three-input two-output PCA network with input
x, weight matrix W, and output y = Wx.

Q* = E(xxT). (1)

The normalized eigenvectors of Q* are denoted
e1,...,eyn, with corresponding eigenvalues A\; >
A2 > --- > An. If we were to form a transformed
random vector

y = Ux (2)

with the successive rows of an N x N matrix U set
to the successive eigenvectors e; of Q*, the new
random vector y = [y1,...,yn] will have compo-
nents y; which are decorrelated from each other,
and in order of decreasing variance

0% = B}) = A 3)
The first output component y; is called the prin-
cipal component of the input, and for any M, the
first M output components [yi, ...,y are called
the M principal components of the input. If this
transform is performed by a neural network or
similar process, we refer to x as the input vector,
and y as the output vector.

In a practical application, instead of a random
vector we typically see a sequence of sample vec-
tors x(t) for t = 1,2, ... distributed according to
p(x). Often only a finite amount of data is avail-
able, so we only see a finite sequence of 7 samples
(sot=1,2,...,7). For large 7, the t-average

QW = (x(t)x(t)") (4)

is a reasonable estimate of the underlying covari-
ance matrix Q*. We can therefore form an esti-
mate of the principal components of x from our
observations of the sample sequence x(t). For the
remainder of this section, we shall assume that
the number of samples is large enough that Q*
and Q*®) are approximately equal.

In an N-input M-output linear neural network
(Fig. 1), PCA is realized simply by setting the
weight matrix W such that the ith row wy; is equal
to the ith eigenvector e; of the input covariance
matrix. The outputs y; of the network are there-
fore the principal components of the input data.

The reason that PCA is useful for pre-
processing is because of its information preserv-
ing properties. Given a number of outputs M,
it is the linear transform which minimizes the
mean squared reconstruction error of the input

sequence x(t) from the output sequence y(t) [26].
Also, it is the linear transform which preserves the
maximum amount of Shannon information at the
output, under assumptions of uncorrelated equal-
variance additive Gaussian noise on the input sig-
nal [44], [65]. PCA is therefore an optimal linear
dimension-reduction method.

Classical Techniques for PCA If the entire
data sample sequence x(¢t) for t = 1,...,7 is avail-
able at once, the required weight vectors for PCA
can be calculated using standard techniques such
as singular value decomposition (SVD) [12]. A se-
quential version is also available, allowing the SVD
to be updated as the data arrives. However, while
SVD is an exact method, which will use all of the
data in the input data sequence seen so far, it is
rather complex for a neural network algorithm. In
addition, it finds all IV principal components of the
input, even if only some small number M <« N of
principal components were needed.

If only the first principal component is needed,
this can be estimated by repeated multiplication
of an initially random vector by the input covari-
ance matrix Q*[27]. If we start with a random
column vector w(0) and repeatedly apply the mul-
tiplication

w(k +1) = Q*w(k) (5)

the component of w(k) in the direction of the prin-
cipal component will soon come to dominate, since
it goes up with A\¥ which quickly becomes much
larger than the corresponding factor for all other
eigenvectors. Of course, the vector w(k) will peri-
odically need to be re-scaled to prevent overflow,
possibly by renormalizing so that its length |w(k)]
is set to 1 after each step. Once the first principal
component has been found, the second can be ex-
tracted by subtracting the effect of the first from
the input data, and re-applying the modified data
to a new random vector.

Unfortunately, while this method is simple
enough to be a neural network algorithm, it can
only be used when all the input data is available
before the procedure starts, so that Q* can be
calculated. However, many neural network algo-
rithms have been proposed which can find princi-

Unsupervised Learning Procedures 187

pal components, using relatively simple “online”
algorithms operating on the data vectors as they
arrive.

Finding the first principal component For

our input vector x = [z1,...,2n] and a single out-
put
N
y(t) = w(t)x(t) = Y wi(t)zi(t) (6)
i=1

the simple Hebbian algorithm

wi(t + 1) = wi(t) + ex;(t)y(t) (7)
which we can write in vector notation as

w(t+ 1) = w(t) + ex(t)y(t) (8)

will tend towards a vector in the direction of the
principal component, but its length will tend to
be unbounded. The factor € is a small update
factor or ‘learning rate’ term. For theoretical con-
vergence of algorithms such as those considered
below, the update factor should decrease slowly
with time, typically as e(t) = 1/¢t. However, in a
practical application, this can often lead to very
slow convergence beyond small values of £, so € is
often set to a small constant instead. In this case,
the algorithm will not fully converge to its sta-
ble point, but will make small random movements
around it, depending on the size of .

Oja [54] modified this algorithm so that w is
renormalized after each step, leading to the two-
step algorithm

w(t+1) = w(t) +ex(t)y(t) 9)
w(t+1) = w(t+1)/|w(t+1)] (10)

which ensures that w(¢) has unit length for all
time ¢ > 0. The weight vector w(¢) in this al-
gorithm asymptotically converges to the principal
component e; (or —eq).

If the update factor € is sufficiently small, Oja
[54] also showed that the two-step algorithm above
can be approximated by the single-step algorithm

w(t+1) = w(t) +e (x(t)y(t) — w(t)y(t)?)
(11)

188 Becker and Plumbley

which is often referred to as “Oja’s Rule”. The
weight vector in this algorithm also converges to
the unit-length principal component, but without
explicitly normalizing at each step. The ‘—wy?’
term on the right hand side of (11) tends to de-
crease the length of w if it gets too large, while
allowing it to increase if it gets to small.

Note in passing that the Oja Rule (11) is also
a local algorithm, which can be seen more clearly
if we write it in the form

wi(t+1) = wi(t) (12)
+e (zi(t)y(t) —wi()y(1)*) -

The term local means that the change to the
weight w; is determined purely by the activations
y and z; at either end of the weight, together
with the weight value w; itself. Most of the neu-
ral network algorithms which extract more than
one principal component are not local algorithms.
This is somewhat important if we are looking for
an algorithm which is biologically plausible, but
is not so great a consideration for most practical
applications.

Re-estimation algorithms Many algorithms
have been suggested which extend the Oja Rule
(11) to M output units y = [y1, ...,y where

N
y;(t) = w;(8)x(t) = Z wji (B)z;(t). (13)

Many of these work in a hierarchical manner, ar-
ranging for the weights to the first output unit to
be updated using the Oja Rule, but with the effect
of earlier outputs either subtracted or decorrelated
away from later units, thus forcing later units to
extract different components.

For example, the Sanger [69] Generalized Heb-
bian Algorithm (GHA) incorporates a form of
Gram-Schmidt orthogonalization (GSO) to give
the algorithm

wi(t+1) = w;(t) + ey; (£) (x(2) — %;(2))
(14)

where X;(t) is given by

X;(t) =D wr(t)y(t)- (15)

k=1

An alternative algorithm, also derived from GSO,
is Oja and Karhunen’s Stochastic Gradient Algo-
rithm (SGA) [57], [56]. This is the same form as
GHA, but with (15) replaced by

j—1

%j(t) = wi(t)ys +2) wi(t)yr(t). (16)

The GHA algorithm (14), (15) and SGA algo-
rithm (14), (16) both force successive outputs to
learn later principal components by subtracting
estimates of the earlier components from the input
before the data reaches the learning algorithm, al-
though the outputs are still calculated from the
original input data. They both reduce to the Oja
rule (11) for a network with single output. Ab-
bas and Fahmy [1] suggested a related approach.
After each successive output unit learns its prin-
cipal component, the effect of that component is
removed by subtracting it from the original data.
Using the Oja Rule on the modified input data
will find the next principal component.

One possible disadvantage with non-
symmetrical algorithms is that they force par-
ticular roles on particular units. Although the
learning proceeds in parallel, in some sense the
first unit has to find the first principal component
before the second can be extracted, and so on
down the chain of output units. Other algorithms
have been suggested which attempt to find the
principal subspace, i.e. the space spanned by the
principal components, rather than the principal
components themselves. This is still sufficient to
minimize mean square reconstruction error and
optimally preserve information [44], [65]: any
linear rotation of the output components will
not affect these properties. Therefore unless the
principal components themselves are needed for
a particular application, it may be sufficient to
have some other set of vectors which spans the
principal subspace.

If only the principal subspace is needed, this
can be also achieved with the symmetrical version
of the Williams [79] Symmetric Error Correction

algorithm, which is equivalent to Oja’s Subspace
Network [55]. In this system, the re-estimator
%;(t) in (15) or (16) is replaced with

M
%5(t) = %(t) =Y wr(t)ye(t). (17)
k=1

With the algorithm (14), (17), the network will
converge to a set of outputs which span the prin-
cipal subspace, rather than the principal compo-
nents themselves, but with the weight vectors w;
orthonormal at convergence (as they are for the
GHA and SGA algorithms).

Oja, Ogawa and Wangviwattana [58] modified
this algorithm to add an additional symmetry-
breaking factor to give

w;(t+1) = w;(t) + ey; () (x(t) — 0;%(t))
(18)

with 0 < 6; < 02 < --- < Oy and x(t) given
by (17). This favours lower-numbered units over
higher-numbered units, resulting in the true prin-
cipal components being extracted rather than the
just the principal subspace.

Decorrelating algorithms An alternative ap-
proach to using the re-estimator X;(t) to remove
the effect of other principal components, is to
decorrelate successive outputs from earlier out-
puts. This forces an output to learn to respond
to different principal component from other out-
puts. Rubner and Tavan [66], for example, sug-
gest such a hierarchical decorrelating model with
adaptive lateral inhibition from lower-numbered

w

Fig. 2. PCA network with hierarchical decorrelation of
output units.

Unsupervised Learning Procedures 189

output units to higher-numbered output units
(Fig. 2).

The outputs in this system are give by
-1
yi(t) = wi(0)-x(t) + Y _vir(ye(t) (19)
k=1

which means that the outputs y; are calculated
in the order yi1,¥y2,--.,ynm- Each forward weight
vector w; is updated according to the Oja Rule
(either (9)—(10) or (11)), and with the lateral con-
nections v to output y; from y, updated accord-
ing to the simple anti-Hebbian algorithm

okt +1) = v (t) — €y (Oye(t) (20)

for j > k. This algorithm for the lateral connec-
tions is anti-Hebbian since the weight value de-
creases (or the inhibition increases) in proportion
to the product of the activations of the units at
either end.

Again, the output from the first unit y; finds
the first principal component, since it is calculated
according to the Oja Rule with no decorrelating
terms. The inhibition between this unit and y in-
creases according to (20) until this second output
is decorrelated from y, forcing ys to find the sec-
ond principal component. The third output ys is
decorrelated from the previous two, and so on un-
til all M desired principal components have been
extracted in order. Kung and Diamantaras [40]
suggested an Adaptive Principal Component Ex-
tractor (APEX) which is related to the Rubner
and Tavan approach.

w

Fig. 3. Foldidk network with symmetrical decorrelation of
output units.

190 Becker and Plumbley

Foldidk [20] suggested that units obeying the
Oja rule should be decorrelated using a symmet-
ric decorrelating stage (Fig. 3).

which in matrix notation is

y(t) = W(t)x(t) + V(t)y(?) (21)

where the lateral inhibition matrix V(t) is forced
to have zero entries on the diagonal. If the out-
puts of the network are allowed to settle so that
(21) is satisfied, then we get

y(t) = @-V(@®) " WHx() (22)

where I is the identity matrix, provided that all
the eigenvalues of V(¢) are less than unity [30]. In
practice, it may be sufficient to use the first two
terms of the expansion [42]

I-V(@H)) I+ V() +--- (23)

in an artificial system. Once settled, the Oja rule
(11) is used to update each forward weight vector,
and the lateral connections v;; are updated with
the anti-Hebbian algorithm (20) as for the Rubner
and Tavan model, but this time for all the sym-
metric connections j # k. In this network, the
lateral connection matrix V = [v;;] is not forced
to be subdiagonal. Note that the update of vjy
is symmetrical, so if V is initially symmetrical, it
will remain so for all t.

Leen [42] analyzed the stability of F6didk’s net-
work, and suggested that the algorithm (20) for
the lateral connections be modified to add a term
proportional to the lateral connection weight itself

vk (t 4+ 1) = vjr(t) + €wPvjr — €y (t)yr(t)

(24)

or an activity-dependent term
Ujk(t+ 1) = Ujk(t) (25)
+ew ((y (1) + yi(1)*)) vjn

—euy; (t)yr(t).

where the (y;(t)? + yx(t)?) term means that the
variance of the output units has to be accumulated
as a measure of activity to drive this algorithm.
With the latter modification, the weight vectors

converge to the principal components themselves,
rather than just the principal subspace, provided
that €, > 2¢, [42]. Since there is nothing in
this system that favours any one output over any
other, the principal components found by this sys-
tem will not appear in any particular order.

Orthonormalized principal subspace Al-
most all of the previous algorithms are generaliza-
tions of the Oja Rule (11), and consequently tend
to preserve the variance of the input components
at the output. However, this is not necessary from
either the information theory or minimum recon-
struction error viewpoints, so alternatives are pos-
sible.

For example, Plumbley [64] suggested two net-
works which can extract the principal subspace,
but produce uncorrelated equal variance outputs,
ie. QY — L

Having outputs of equal variance is desirable in
systems with limited channel capacity, and may
facilitate subsequent classification by normalizing
the scale of the outputs.

The first (Fig. 4(a)) uses lateral inhibition at
the output, similar to the Foldidk network (21),
but with self-inhibitory connections w;; allowed.
As for that network, we have

y(t) = W()x(t) + V(t)y(?) (26)
leading to
y(t) = @1— V()™ W(t)x(t) (27)

after settling, but with diagonal entries of V(t)
allowed. Using the algorithm

wi(t+1) = w;(t) + €y (y;(1)x(t) — aw;(t))
(28)

and

vk (t +1) = vjr(t) + € (y; #)yr (t) — Bjk)
(29)

where 4, is the Kronecker delta which is 1 when
j = k and 0 otherwise, and €, > €,, the outputs
will converge to an uncorrelated, equal variance
set which spans the principal subspace.

(a)

Unsupervised Learning Procedures 191

Fig. 4. PCA networks with uncorrelated equal variance outputs.

The second network (Fig. 4(b)) uses a set of
inhibitory interneurons, and is specified by

y(t) = WHx(t) - V(H)z(t) (30)
z(t) = V(IO)Ty(?)
leading to

-1

y(t) = I+ VEOVOT) W(tx(t) (31)

after settling. Using the algorithm (28) again for
the forward weights, with the algorithm

’l)jk(t+ 1) = Ujk(t) + (32)
ev (y;(t) 2k (t) — Bok (b))

for the lateral connections, again the algorithm
converges when the outputs are uncorrelated,
equal variance, and span the principal subspace
(provided that €, > €,, and all the selected
principal components of the input have variance
greater than a [64]).

Auto-Encoders Instead of using one of the
many principal subspace algorithms mentioned so
far, the Error Back Propagation (‘BackProp’) al-
gorithm can also be used to find the principal sub-
space [4]. Consider the N — M — N linear network

w \Vs

Fig. 5. Auto-encoder network with N = 3 and M = 2.

y
(b)
of Fig. 5 with
N
yi(t) = Zwa'i(t)wi(t) (33)
1;41
() = D ok (£)y; (1) (34)
j=1

If BackProp [67] is used to minimize the mean
squared error E = (|x(t) — z(t)|?) in this system,
the units in the hidden layer y will become some
set of vectors which spans the principal subspace.
Note that there is nothing to force the weight vec-
tors w;(t) to be orthogonal: any set of weights
which spans the principal subspace is sufficient [4].

In common with other networks which use
BackProp, the units in an auto-encoder can have
nonlinear activation functions, such as the sigmoid
function o(a) = 1/(1 + exp(a)). In this case (33)
and (34) become

N

yt) = o (Zwmt)xi(t)) (35)
i=1
M

2(t) = o | Dok (By;(8) | - (36)
j=1

In theory these are capable of more complex be-
haviour than purely linear networks, and should
be able to extract a nonlinear component or hyper-
surface from the input subspace. However, opin-
ions are divided as to whether this is achieved in
practice, and some have argued that a method
based on SVD is more reliable, and not susceptible
tolocal minima [12]. A further problem is that the
nonlinear hidden layer codes are usually difficult
to interpret. Saund [70] and Zemel and Hinton

192 Becker and Plumbley

[80] have explored ways of constraining the hid-
den unit codes adopted by autoencoder networks
to obtain more biologically plausible and/or in-
terpretable representations such as value codes or
topographic maps.

2.2. Temporal prediction

The techniques described so far only deal with
static patterns. An important characteristic of
real-world data such as visual and speech signals
is the presence of temporal structure. By discov-
ering ways in which such structure is predictable
over time, it is possible to form a compressed rep-
resentation of the data, and thereby capture its
underlying temporal constraints. One way to pose
this problem in an unsupervised learning frame-
work is to train a network to predict its input at
the next time step based on previous inputs. This
is a generalization of the auto-encoder network in
which the error signal is E = (|x(t — 1) — z(t)|?).
The learned mapping is information-preserving to
the extent that each input pattern can be ac-
curately predicted from inputs at previous time
steps. The two major techniques for providing
temporally varying information to a network are
to either use tapped delay lines - making inputs
from several time steps available simultaneously,
thereby spatializing the time domain - or using
recurrent feedback connections; a number of vari-
ations on architectures and training methods for
these networks are reviewed by Mozer [49]. Un-
like delay-line neural networks, recurrent networks
are sensitive to information over a potentially in-
finite time span; however, in practice they have
enormous difficulty learning to maintain state in-
formation over long time intervals. Schmidhuber
[72] and Mozer [48] have proposed two different
ways of addressing this problem in recurrent net-
works.

2.3. Independent Components Analysis

When the input is composed of a combination of
independent signals, linear methods such as prin-
cipal components analysis, in general, are inca-
pable of separating the independent sources. Jut-
ten and Herault [34] developed a learning proce-

dure, INCA, for extracting statistically indepen-
dent components of the input vector, when the in-
put vector x is modelled as an additive mixture of
unknown independent signal components x(t) =
Az(t) where the matrix A consists of unknown
real scalars. A recursive network very much like
Foldiak’s symmetrical net (Fig. 3) is used to pro-
duce outputs yi(t) = zi(t) — Xop i vik(t)yk(?)
which come to approximate the independent sig-
nal components. Using the fact that if all higher
order moments of two signals are uncorrelated, the
signals are independent, a modified Hebb-rule is
proposed:

’Ujk(t) = ’Ujk(t -1) (37)
+ef(y;(£)g(yr(t)))

This rule decorrelates higher-order moments f
and g of the inputs. One choice of functions
used in many of Jutten and Herault’s simulations,
which they claim worked well for most of their test
problems, is f(z) = 23, g(y) = tan"1(y).

2.4. Direct minimization of information loss

The methods discussed above ensure that minimal
information is lost in a network mapping by min-
imizing reconstruction error. A related, but more
general approach is to use concepts from infor-
mation theory. A number of learning procedures
have been proposed which minimize the informa-
tion loss in a network mapping, subject to pro-
cessing constraints. The common feature of these
methods is the preservation of mutual information
between the input vector x and output vector y:

Iz;y = H(X) + H(y) - H(X7 y) (38)

where H(x,y) is the entropy of the joint distri-
bution, H(x,y) = — x’yp(x,y) log p(x,y). This
measure is due to Shannon [74] and tells us the
amount of information in x less the amount re-
maining in x when y is known, or the uncertainty
in x which is accounted for by y (and vice versa).
In the unconstrained noise-free case, all the infor-
mation can be preserved simply by copying the
input. Linsker [44] proposes maximizing the in-
formation rate in the presence of processing noise
at either the input or output layer (the “Infomax
principle”). The information rate for a collection

of linear units with Gaussian input distribution
and independent, equal-variance Gaussian noise
added to the outputs is:

I =0.51og (‘J((?;;L[) (39)

where |QY| is the determinant of the covariance
matrix of the output vector y (the signal plus
noise) and V' (n) is the noise variance. This results
in a tradeoff between maximizing the variances of
the outputs, and decorrelating them, depending
on the noise level.

The above analyses apply to linear networks.
Adding the usual form of sigmoid nonlinear-
ity makes an information-theoretic analysis much
more difficult. Linsker [45] shows that adding a
“weakly nonlinear” (cubic) input-output relation
to the Infomax principle, for certain translation-
invariant input distributions, results in a set of
units tuned to different spatial frequencies and
spatial locations, much like a wavelet representa-
tion.

An alternative optimality criterion proposed by
Barlow [5] is to find a minimally redundant en-
coding, which should facilitate subsequent learn-
ing. If the encoding of the sensory input vector
into an n-element feature vector has the prop-
erty that the n elements are statistically indepen-
dent, then all that is required to form new associ-
ations with some event V' (assuming the features
are also approximately independent conditioned
on V) is knowledge of the conditional probabili-
ties p(V|y;), for each feature y; (rather than com-
plete knowledge of the probabilities of events con-
ditional upon each of the 2" possible sensory in-
puts). Thus, such a representation should be use-
ful as a preprocessing stage for a variety of prob-
lems.

Barlow proposes that one way to achieve featu-
ral independence is to find a minimum entropy en-
coding: an invertible code (i.e., one with no infor-
mation loss) which minimizes the sum of the fea-
ture entropies. In the general case, this problem is
intractable. Atick and Redlich [3] have proposed a
cost function for Barlow’s principle for linear sys-
tems which minimizes the power (redundancy) in
the outputs subject to a minimal information loss
constraint. This is closely related to Plumbley’s
[63] objective function, which minimizes the infor-

Unsupervised Learning Procedures 193

mation loss subject to a fixed power constraint,
and for which a simple Hebbian learning scheme
is derived. Schmidhuber [71] has proposed sev-
eral ways of approximating Barlow’s minimum re-
dundancy principle in the general case, for nonlin-
ear networks. Without the Gaussian assumptions,
this implies a much stronger result of statistically
independent, rather than just decorrelated, out-
puts. Schmidhuber’s learning scheme is rather
complex, however, and appears to be subject to
oscillations and local minima.

2.5. Applications

Many of the applications for PCA and subspace
methods are related to data compression or pre-
processing of speech [18], [12] or images [15].
Sanger, for example, used his GHA network for
image compression [69]. He also extended this to
nonlinear units with a rectification nonlinearity,
which he used to discover stereo disparity in ran-
dom dot stereograms.

Leen, Rudnick and Hammerstrom [43] used
PCA networks for signal pre-processing and found
improved classification performance. Karhunen
and Joutsensalo [36] use the SGA principal sub-
space algorithm for frequency estimation. They
suggest that an undate factor of € ~ 1/ (0.5[x(t)|?)
gives good initial convergence, with e decreasing
with 1/t after the first few cycles.

An alternative application of subspace methods
is for more direct classification. Oja [55] allows a
network to learn one subspace per class, with mod-
ifications to the learning algorithms to make sure
the subspaces differentiate between classes. When
classifying, the class with the closest subspace to
the input vector (calculated from its projection
into each subspace) is the ‘winner’. He used this
approach to classify Brodatz image textures.

Temporal sequence predictors have been ap-
plied to a range of prediction problems. Recur-
rent networks have been used predominantly for
symbolic tasks in which the goal is to represent
discrete hidden variables by extracting temporal
structure. For example, Elman [17] has used sim-
ple recurrent networks to infer grammatical struc-
ture from sentences. Mozer [49] has applied recur-
rent networks with multiple time decay constants
to the problem of extracting musical structure at

194 Becker and Plumbley

multiple time scales by predicting notes in a mu-
sical score.

The tapped-delay-line method has been used
successfully on real-valued, noisy signal predic-
tion problems such as chaotic time series predic-
tion [41], [78]. The key to selecting the appropri-
ate architecture for a temporal problem is to have
an appropriate characterization of the problem in
advance. For example, if the problem requires
explicit knowledge of previous real-valued inputs
within a short time window, the time-delay ar-
chitecture is appropriate. If the problem requires
only a few bits of history information over arbi-
trarily long time periods, a small number of hid-
den units with recurrent connections can be used
to learn these “hidden state variables”. Accurate
real-valued state information is difficult to main-
tain over time in recurrent networks unless a very
large number of hidden units are used.

Jutten and Herault [34] applied their indepen-
dent components analysis algorithm to images of
sloped handwriting. When random samples of
(z,y) points were used as input, a two-neuron net-
work was able to remove the dependence between
the input coordinates, resulting in output images
consisting of unsloped text. Further, in a compan-
ion paper, Jutten and Herault [35] demonstrated
the success of the algorithm on a number of dif-
ficult synthetic nonlinear source separation prob-
lems.

3. Density Estimation Techniques

Rather than trying to retain all of the information
contained in the input, we could try to develop
a more abstract representation by characterizing
its underlying probability distribution. This ap-
proach can lead to useful features for classification
or other subsequent learning tasks. Many stan-
dard statistical methods fall under the category
of density estimation techniques, and several un-
supervised learning procedures can be viewed in
this way. (In fact, the techniques discussed here
under the category of density estimation might
more specifically be characterized as maximum
likelihood parameter estimation methods.) The
general approach is to assume a prior model which
constrains the general form of the probability den-
sity function, and then to search for the particu-

lar model parameters defining the density func-
tion most likely to have generated the observed
data. This approach can be mapped onto an un-
supervised learning problem if we treat the net-
work weights as the model parameters, and the
overall function computed by the network as be-
ing directly related to the density function.

3.1. “I-of-n encodings”: Mixture models and
competitive learning

One possible choice of prior model is a mixture
of Gaussians. The underlying assumption in this
case is that each data point was actually generated
by one of n Gaussians having different means pu;,
variances ¢;2, and prior probabilities or mixing
proportions ;. Fixing the model parameters pu;,
oi, and 7;, we can compute the probability of a
given data point x as follows:

p(x[{pi},{oi}, {m}) (40)
= Z?:l ﬂ-if)i(xv Hi, Ui)

where P;(x, pu;,0;) is the probability of x under
the ith Gaussian. Applying Bayes’ rule, we can
also compute the probability that any one of the
Gaussians generated the data point x:

p(ilx, {pi}, {o:}, {mi}) (41)

_ i Pi (X, 1i,04)
- n
i1 ™iPi(%m5,04)

Given these probabilities, the model parameters
can be adapted by performing gradient ascent in
the log likelihood of the data given the model,
log(L) = Y, log(p(x | {m},{o:},{m})) The
EM algorithm [16] alternately applies equation
(41) (the Expectation step) and adapts the model
parameters (the Maximization step) to converge
on the maximum likelihood mixture model of the
data.

Competitive learning procedures [76], [22], [37],
[14], [68] are used primarily for clustering. The
general idea underlying competitive learning is to
induce a competition between units’ responses, ei-
ther by a winner-take-all activation function or
with lateral interactions, so that only one unit in
each competitive cluster tends to be active at a
time. Typically only the winning unit learns on
each case, by moving its weight vector closer to

the current input pattern. For example, Rumel-
hart and Zipser’s [68] version of competitive learn-
ing sets the activity of the winning unit (the one
with the greatest total input, ;) to one, and the
rest to zero, and uses the following learning rule:

wii(t+1) = wj(t) (42)
i (Z = “’""(t))

+ if unit j wins
on pattern «
0 otherwise

By redistributing some proportion € of the unit’s
weights to the weights on its active input lines,
this rule maintains the constraint that), wj; = 1,
for each unit j. Each unit is performing gradient
descent in the squared distance between its weight
vector and the patterns nearest to its weight vec-
tor (subject to a unit length constraint), which
in the batch version is equivalent to the standard
k-means clustering algorithm. Nowlan [53] has
pointed out that this standard version of compet-
itive learning is closely related to fitting a mix-
ture of Gaussians model, with equal priors 7; and
equal variances o?. Using the EM algorithm, ev-
ery unit (not just the winner) would adjust its
mean according to its distance to the current in-
put vector, but in proportion to the probability
that its Gaussian model accounts for the current
input (equation (41)). Competitive learning ap-
proximates this step by making a hard (one-in-
n-ary) decision as to which unit accounts for the
input. Thus, the same learning rule applies, ex-
cept that the proportional weighting is replaced
by an all-or-none decision. So hard competitive
learning can be viewed as a mixture of Gaussians
estimation procedure using infinitesimally small
variances.

Nowlan [52], [53] proposed a “soft competitive
learning” model for neural networks. Rather than
only allowing the winner (or winning neighbor-
hood) to adapt, each unit can adapt its weights
for every input case, in proportion to how strongly
it responds on a given case, P;(x(t), pi, 0):

pi(t) = (43)
Ki(t — Dpi(t — 1) + Pi(x(t), pi, 0i)x(2)
ki(t — 1) + Py(x(t), pi, 0:)

Unsupervised Learning Procedures 195

The variances can be adapted similarly. This is an
online version of the EM algorithm for Gaussian
densities with equal priors, and adaptive means
and variances. Neal and Hinton [51] have shown
that incremental variants of EM perform gradi-
ent descent in a global energy function; they treat
Nowlan’s algorithm as a special case of these, and
show that it performs approximate gradient de-
scent.

An appealing aspect of the soft competitive
learning algorithm is that it can be generalized
to incorporate arbitrary prior information such as
supervisory signals, as in the “competing experts”
model of Jacobs et al. [32]. Jordan and Jacobs
[33] show how to generalize the competing experts
framework to discover a hierarchical decomposi-
tion of structure in the input.

One useful variation on competitive learning
is to define a neighborhood relation among the
units, for example, by arranging them on a two-
dimensional lattice; each unit then learns in pro-
portion to its distance from the winning unit
[76], [37]. This forces the competing units to form
a topographic mapping in which nearby points in
the input space are mapped to nearby points in
the neighborhood space. In Kohonen’s model of
unsupervised topological map formation [37], [38]
a set N;(t) is defined for each unit 4, determining
those units within its neighborhood. The “win-
ning unit” c is the one for which the Euclidean
distance between its weight vector and the cur-
rent input vector is minimal. Every unit within
the winner’s neighborhood, ., adapts its weights
according to the following learning rule:

e(xd —wyi(t))
if unit j € N, (44)
0 otherwise

wji(t + 1) = wji(t)

If both the learning rate £ and the neighborhood
size shrink gradually over the course of learning,
the units’ responses tend to become distributed
evenly over the input probability distribution.
The neighborhood set N. can be replaced by a
continuous function N(i,j) of the distance be-
tween units ¢ and j in the lattice; this leads to
smoother learning. For neighborhoods of size 1,
like standard competitive learning, Kohonen’s al-
gorithm is equivalent to k-means clustering [38].
For larger neighborhoods, the algorithm is a gen-

196 Becker and Plumbley

eralization of k-means which adapts each weight
toward the centre of its own cluster of patterns
and its neighbors’ clusters, resulting in an or-
dered mapping that tends to preserve the topo-
logical structure of the input distribution. Luttrell
[46] has shown how Kohonen’s algorithm can be
viewed as a variant of minimum distortion vector
quantization (MDVQ). If we interpret the weight
vector of the winning unit as the predicted input,
X = w,, then the distortion or reconstruction er-
ror is just

D=|x—%| (45)

Now suppose there is an additive noise process
m which distorts the output of units, making it
impossible to determine with complete certainty
which output was the winner. Then each unit will
contribute to the distortion error, as a function of
its distance to the winner:

D= Zﬂ(yi —Ye) [x — X| (46)

This noisy version of MDVQ is equivalent to Ko-
honen’s algorithm, where 7 is the neighborhood
function; within the same framework, Luttrell [46]
goes on to generalize the Kohonen algorithm to
perform hierarchical MDVQ. In summary, like the
hard competitive learning model, Kohonen’s algo-
rithm can be viewed as a version of the mixture of
Gaussians model with infinitesimally small vari-
ances, with the addition of a noise process dis-
torting our estimates of the probabilities of each
Gaussian capturing the data.

Fukushima’s Neocognitron [23] generalizes
standard (hard) competitive learning to form a
multi-resolution hierarchy of translation-invariant
feature detectors. This network has produced im-
pressive results on translation- and scale-invariant
character recognition. The architecture of the net-
work is as follows: each layer is organized along
two dimensions, 1) into “planes” of units having
different receptive fields but weights constrained
to be identical, and 2) into “columns” of units
having overlapping receptive fields but different
weights. Units in higher layers receive input from
a spatially localized region of units (in all planes)
in the layer below, hence a hierarchy of receptive
fields of different spatial scales is formed. The
details of the unit activation functions are rather

complex; the essential features of the model are
that 1) units within a column compete to respond
via lateral inhibition, and 2) units within a spa-
tially localized region within a plane transmit the
“inclusive or” of their responses to the next layer
up. Hence, if the feature encoded by a particular
plane is detected anywhere in the input “retina”
it gets transmitted to the next layer up but with
some loss of spatial localization. As in competi-
tive learning, the winning unit within a compet-
ing cluster (column) moves its weights toward its
current input; additionally, the other units in the
plane perform identical weight updates. Note that
it is possible for multiple planes to adapt simulta-
neously on a given case. Thus, the Neocognitron
is another variation on density estimation, that
is, it is equivalent to hard competitive learning
with the addition of equality constraints between
weights of corresponding units in different com-
peting clusters having identical receptive fields.

3.2. Combinatorial representations

A major limitation of mixture models and stan-
dard competitive learning schemes is that they
employ a 1-of-n encoding, in which a single unit
or model is assumed to have generated the data.
A multiple causes model is more appropriate when
the most compact data description consists of sev-
eral independent parameters (e.g. color, shape,
and size of an object in a visual scene).

Mozer [47] has proposed a distributed version
of competitive learning for binary units that dis-
covers multiple classifications of the data. Each
layer of competing units receives as input the re-
construction error from the previous layer, and
performs clustering on that error. Mozer shows
that this scheme can be used to discover useful
distributed binary features for image compression.

A more general way to learn arbitrary proba-
bility distributions over data is with the stochas-
tic Boltzmann Machine (SBM) [29], or its compu-
tationally more efficient cousin the Deterministic
Boltzmann Machine (DBM) [61]. The DBM is
considerably faster to train, as the mean field ap-
proximation eliminates the stochasticity in both
the annealing process, and the sampling of the
equilibrium correlation statistics. Theoretically
one could train an unsupervised DBM exactly as

for the SBM. Unfortunately, the mean field ap-
proximation used in DBMs is not particularly use-
ful in this case; a DBM cannot form an adequate
representation of the unclamped distribution, as
all 2™ states of the n units are represented by a
single mean state [25]. Peterson and Hartman [62]
suggest one way around this problem. In the neg-
ative phase, only a random subset of the units are
left unclamped. Using this method, they showed
that the network was able to learn a set of ran-
dom patterns, and perform pattern completion
when partially specified or noisy patterns were
presented.

Freund and Haussler [21] describe an efficient
way to train SBMs unsupervised. The goal is to
learn the “hidden causes” of a collection of pat-
terns, with each hidden unit representing one hid-
den cause. They use a restricted architecture,
allowing only between-layer connections, so that
when all of the visible units are clamped, no set-
tling is required. For this case, they derive an algo-
rithm for efficiently computing the absolute prob-
abilities of each input state, summed over every
possible state of the hidden units. This leads to a
single-phase learning procedure which maximizes
the absolute probability of training patterns. The
network thereby learns to adopt hidden unit states
which are good generators of the input pattern
set. However, as the model has only a single hid-
den layer, it could take exponentially many hid-
den units to model an arbitrary probability distri-
bution (Radford Neal, personal communication).
Neal [50] presents a more general way of model-
ing the probability distribution of a pattern set in
a multilayer stochastic “connectionist belief net-
work”, which falls within the class of Pearl’s belief
networks [59]. As it is not restricted to single layer
networks, it should be able to model complex dis-
tributions with fewer parameters, although with a
high price in learning time.

3.8. Applications

Variations on soft competitive learning, also re-
ferred to as radial basis function (RBF) networks,
are now being widely used to preprocess speech
data. A common technique is to use unsuper-
vised learning to adapt the Gaussian means (the

Unsupervised Learning Procedures 197

mixing proportions are subsequently thrown out),
and then add a second layer of linear units which
are trained via supervised learning to discover op-
timal linear combinations of the Gaussian unit
outputs to perform classification. For example,
Nowlan [52] showed that this method is superior
to the traditional “hard competitive learning mod-
els” on two classification tasks, hand-written digit
and vowel recognition. Jordan and Jacobs [33]
applied the hierarchical version of the competing
experts model in a set of competing auto-encoder
networks that learn a hierarchical classification of
leaf morphology data.

Kohonen [38] has applied his algorithm to pre-
processed speech data, and found that the clusters
found by units usually correspond to phonemes.
The sequences of these “quasi-phonemes” pro-
duced by processing a sequence of time slices of
the speech signal can be viewed as an ordered tra-
jectory through a “phonological map”, indicating
that the network has learned to represent similar
sounds at nearby locations in the map. In ap-
plications where clustering is an appropriate pre-
processing stage, Kohonen’s algorithm is easy to
implement and tends to be less sensitive to ini-
tial conditions compared to standard competitive
learning; the latter is prone to greedy behaviour,
where a subset of the competing units capture all
of the patterns initially, and the other competitors
are thus prevented from ever learning.

The Neocognitron has been applied to simple
character recognition problems [24]. Because of
the equality constraints implicit in the learning
procedure, the model is able to learn classes which
are somewhat scale- and shift-invariant. Thus, the
algorithm has proven to be able to discriminate
nonlinearly separable pattern classes by building
in translation-invariance of feature detectors.

The methods proposed by Freund and Haussler
[21] and Neal [50] are both of theoretical inter-
est, and could have potential applications in un-
supervised higher-order feature discovery for clas-
sification. Their efficient use of such methods in
real-world applications, however, remains to be
demonstrated.

4. Feature extraction methods

The methods discussed in the previous two sec-
tions are based on the goal of characterizing as ac-

198 Becker and Plumbley

curately as possible the input patterns, or the un-
derlying distribution which generated them. This
is a reasonable first step in extracting useful struc-
ture from data, assuming minimal prior knowl-
edge. Often real-world data is redundant and
noisy, so general methods like clustering or prin-
cipal components are useful for improving the sig-
nal to noise ratio and achieving data compression.
But how can unsupervised learning be applied be-
yond these preprocessing stages, to extract higher
order features and build more abstract represen-
tations? One approach is to build in more sophis-
ticated prior models; we have already seen sev-
eral examples of this approach (e.g. Freund and
Haussler’s [21] and Neal’s [50] methods). Another
approach is to restrict our search to particular
kinds of structure. If we can make constraining
assumptions about the kind of structure we are
looking for, we can build these constraints into the
network’s architecture and/or objective function
and thereby develop more efficient, highly special-
ized learning procedures. In this last section, we
consider several examples of learning procedures
based on the idea of learning particular features
of the data.

4.1. Mazimally “selective” projections

Bienenstock, Cooper and Munro [11] proposed a
learning rule (commonly referred to as the BCM
rule) which results in a form of temporal selec-
tivity of a single unit with respect to some par-
ticular environment. They proposed the following
measure of selectivity, which depends on the ratio
of the unit’s mean response over all inputs to its
maximal response:

b (47)

Selw) =1~ o)

The ideal unit, by this measure, gives a maximal
response to one particular pattern, and very low
responses to the other patterns. To achieve this,
the authors proposed a family of Hebb-like learn-
ing rules which satisfy:

Wi = V(y;,75)yi — ewys (48)

where @ denotes the rate of change of w over time,
y; is the mean output, and ® must satisfy:

sign (®(y;,75)) (49)
. 7\ _
o (- (7))
if Yyj; > 0
and
®(0,y;) =0 for all g5 (50)

where p and ¢, are positive constants, and units’
activities are always positive. This learning rule
led to the development of tight orientation tuning
curves for units, using simple oriented line pat-
terns as inputs. Intrator [31] has proposed a re-
lated objective function for maximizing selectiv-
ity, which causes a unit to discover projections of
the data having bimodal or multi-modal distribu-
tions. Intrator’s objective function for units with
a sigmoidal nonlinearity o(x) is:

—g {o® (x.m) (51)
—E [0?(x.m)] ¢*(x.m) }

where the threshold of a wunit is set to
E [0*(x.m)]. When applied to a group of units
which inhibit each other, this leads to the discov-
ery of multiple features in the data. Intrator dis-
cusses the relation of this method to exploratory
projection pursuit. The method tends to discover
projections having a non-Gaussian, or skewed dis-
tribution which may be useful as features for cer-
tain classification problems.

4.2. Statistical dependencies between the inputs

The GMAX algorithm [60] is based on the goal of
redundancy-detection. It causes a unit to discover
statistical dependencies between its input lines by
maximizing the difference between the output dis-
tribution of the unit, P, in response to structured
input, and the distribution, @), that would be ex-
pected if the input lines were independent. Us-
ing probabilistic binary units, the asymmetric di-
vergence between these two distributions is maxi-
mized:

(1—-P)log 1-r (52)

P
G = Plog =0

G

In general, it is not feasible to calculate) explic-
itly, as it requires sampling all 2" possible states
of the n input units. Pearlmutter and Hinton
approximate the expected value of the output y
under the distribution () by simulating a “nega-
tive learning phase” (somewhat analogous to that
of the Boltzmann machine) in which input pat-
terns with independent components are generated.
When a unit is trained in this manner on images of
oriented bars, it learns centre-surround receptive
fields much like those learned by Linsker’s Heb-
bian network. Unfortunately, there is no straight-
forward generalization of the GMAX principle to
multiple output units. Pearlmutter and Hinton
propose two possible approximations: adding an
extra term to the objective function which mini-
mizes the correlation coeflicient between the out-
puts of units, and a mechanism of mutual inhibi-
tion. The former would encourage units to learn
statistically independent features, whereas the lat-
ter would encourage the discovery of mutually ex-
clusive features. Although the GMAX principle
may have limited applicability to general problems
in the binary case (because of the sampling prob-
lem mentioned above), it is possible to apply the
same principle in the continuous (Gaussian) case,
as described in the next subsection; this results in
an interesting algorithm which should be applica-
ble to multi-layer nonlinear networks.

4.8. Invariant features

It has been suggested that the computation of in-
variant features about the world plays a funda-
mental role in human pattern recognition. This
suggests that a reasonable goal of unsupervised
learning is to develop invariance detectors: units
that discover features of the input distribution
which exhibit some form of invariance (e.g., a unit
that finds a nontrivial linear combination of its in-
puts which is always zero). One attractive aspect
of this view is that the actual output of an invari-
ance detector would represent the extent to which
the current input violates the network’s model of
the regularities in the world. This is an efficient
way of transmitting information about the current
input.

Unsupervised Learning Procedures 199

Several algorithms for learning invariant fea-
tures of the input have been proposed. Kohonen
and Qja [39] proposed a learning algorithm for a
single unit which acts as a “novelty detector”, by
responding best to patterns which are orthogonal
to the principal subspace of the input distribution.
Fallside [19] proposed a learning procedure which
implements a linear prediction filter: a unit re-
ceives inputs representing the values of a signal at
several time frames, and tries to make its output
zero by computing the sum of the signal at the
current time slice and a linear combination of the
signal values at previous time slices. Atick and
Redlich [2] proposed an equivalent learning pro-
cedure for a spatial predicting unit, to model the
development of retinal ganglion cell kernels. The
latter two methods could both be applied in the
nonlinear case as well; these methods are closely
related to Imax, described in the next subsection.

Becker [6] has shown that a continuous gener-
alization of GMAX for Gaussian input distribu-
tions results in an invariance detector that mini-
mizes the ratio of its output variance divided by
the variance that would be expected if the input
lines were independent (the sum of the variances
of the inputs):

V(yi)
25 wiiV(y;)

where y; = > ; WijYj- Although this analysis
assumes that the output y; is a linear function
of the inputs y;, the inputs could themselves be
the outputs of nonlinear hidden units, resulting
in a multi-layer learning procedure for discovering
higher-order invariants.

This algorithm is further generalized to apply
to a group of units which form a mixture model
of different invariant properties of the input pat-
terns [6]. Schraudolph and Sejnowski [73] pro-
pose a closely related learning scheme, combin-
ing a variance-minimizing anti-Hebbian term and
a term that prevents the weights all converging
to zero. They show that a set of competing units
can thereby discover population codes for stereo
disparity in random dot stereograms. Bell [10]
has proposed an energy-minimizing algorithm for
a single axon that leads to an anti-Hebbian learn-
ing rule that predicts the evolution of ion channel
densities; this allows an axon to redistribute chan-

(53)

200 Becker and Plumbley

nels so as to efficiently process recurring spatio-
temporal patterns.

4.4. Spatially coherent features

Becker and Hinton [8] proposed that a good objec-
tive function for unsupervised learning is to dis-
cover properties of the sensory input that exhibit
coherence across space and time. The Imax learn-
ing procedure [8] does this by maximizing the mu-
tual information between the outputs, y, and v,
of network modules that receive input from dif-
ferent parts of the sensory input (e.g. different
modalities, or different spatial or temporal sam-
ples), as shown in Figure 6. To compute the en-
tropies in Jy,;y, = H(ya) +H(ys) — H (ya, ys), con-
straining assumptions about the distributions of
Yo and yp must be made.

In the discrete binary case, the expected out-
puts of two units can be approximated, as can
their joint probabilities, by sampling over the in-
put ensemble. The entropies can then be com-
puted analytically:

H(y;) = —(logp;) (54)
= —p;logp; — prlogpz

where p; =<y;> is the expected value of the ith
unit’s output averaged over the fluctuations for
each training case and also over the whole ensem-
ble of cases (when y; is treated as a stochastic bi-
nary variable), and p; =<(1—y;)>. The following
learning rule is then obtained by differentiating

Maximize I

Image patch 1 Image patch 2

Fig. 6. Two units with separate inputs, that maximize
their mutual information.

Iy,
ol,.. .6p‘?‘
Aw = Ui 55
V= e o (55)
o Di o Dij
= —P%|log— — pSlog—
[& or / gpij

a0, i | 0P
pj log pﬁ] B
where p{ is the expected output of the ith unit on
training case a, P is the probability of training
case a, and p;; =<y;y;>, etc. This learning rule
can be applied to two multi-layer modules to learn
features that are not linearly separable, such as
the shift in random binary shift patterns [6]. The
two modules receive as input random binary pat-
terns in which the left half is a shifted version of
the right half. The inputs to the two modules are
unrelated apart from having the same shift. Un-
fortunately, at least on this particular problem,
the binary version of Imax has a tendency to be-
come trapped in local maxima, because the ob-
jective function encourages units to become very
strongly binary (and hence, to develop very large
weights).

One way to extend Imax to handle multi-valued
spatially coherent features is to maximize the mu-
tual information between two discrete n-valued
variables rather than binary variables. A set of
n units can be forced to represent a probability
distribution over the n states of a discrete random
variable A € {a; - -a,}, by adopting states whose
probabilities sum to one. This can be done, for ex-
ample, by using the “softmax” activation function
suggested by Bridle [13]:

evi
WS
]:

where z; is the total weighted summed input to
the ¢th unit. The mutual information between two
n-valued variables, A and B, can be computed in
a straightforward manner, once we know the prob-
abilities of each value of A and B, as well as all
the pairwise probabilities:

P(A= (56)

Inp = — ZP(A =a;)log P(A = a;)

—> P(B=1b;)log P(B =1b;)

+ZP(A:U,Z',B: b])
ij
IOgP(A = a,-,B = bj)

This is a straightforward generalization of the bi-
nary case, and similar learning rules can be de-
rived [6].

Under Gaussian assumptions, a simpler objec-
tive function for Imax learning can be derived. If
we assume that both modules receive input that is
caused by some common underlying signal s cor-
rupted by independent Gaussian noise in each in-
put patch, and that the modules transform the
input into outputs y, and y; that are each noisy
versions of the signal, y, = s + ng, Yp = 5 + Ny,

then:

V(ya + yb)
V(Ya — ys)

where V' stands for variance. This measure tells
how much information the average of y, and y,
conveys about the common underlying signal, i.e.
the feature which is coherent in the two input sam-
ples.

I=0.5log (57)

Multi-dimensional features The continuous
version of Imax can be generalized to extract mul-
tiple parameters, y, and yp, that each represent
multi-dimensional Gaussian signals with indepen-
dent additive Gaussian noise. In this case, the
following objective function can be maximized:

|an+yb| 58
Qe O

where y, and yp are parameter vectors extracted
from neighboring patches, Q is a covariance ma-
trix and |Q| its determinant. Zemel and Hinton
[81] have explored applications of this method to
visual object recognition problems.

I)’a'l‘)’b;signal =0.5 log

4.5. Applications

Intrator has demonstrated his nonlinear multi-
unit version of the BCM rule on speech data hav-
ing dimensionality as large as 5500; compared to
supervised BackProp, the algorithm “ ... is able to
find a richer, linguistically meaningful structure,

Unsupervised Learning Procedures 201

containing burst locations and formant tracking of
the three different stops that allowed a better gen-
eralization to other speakers and to voiced stops.”
(Intrator [31], pp. 105).

The multi-valued discrete version of Imax has
been successfully applied in single-layer networks
to toy problems such as extracting combinations
of spatial frequency and phase in sinusoidal in-
tensity patterns [6]. It has also been applied,
with limited success, by Lapedes and Steeg to the
much more difficult problem of extracting mutu-
ally predictable features from protein sequences
and their three-dimensional descriptions (Evan
Steeg, 1993, personal communication); here, how-
ever, the method seemed to be prone to getting
trapped in local optima.

The continuous version of Imax has mainly
been applied to toy problems of sufficient complex-
ity that they could not be solved by a single layer
or linear network. For example, on the binary
shift problem, it performs extremely well, and get-
ting stuck in local minima does not seem to be a
problem. It has also been applied successfully to
continuous higher-order feature extraction prob-
lems such as learning to represent stereo disparity
and surface curvature in random dot stereograms
[8]- Under a mixture model of the underlying co-
herent feature, the algorithm can be extended to
develop population codes of spatially coherent fea-
tures such as stereo disparity [8], and to model the
locations of discontinuities in depth [9]. Finally, it
has been applied to temporally varying patterns
to classify temporally coherent objects over time
[7]-

Zemel and Hinton [81] have applied the multi-
dimensional version of Imax to the problem of
learning to represent the viewing parameters of
simple synthetic two-dimensional objects. The
learning procedure tries to extract multiple fea-
tures from an image patch which are uncorrelated
with each other, as well as being good predictors
of the feature vector extracted from a neighbor-
ing patch. The method is potentially more pow-
erful than linear methods such as principal com-
ponents analysis, because the network can com-
pute arbitrary nonlinear transformations in order
to extract these features. One difficulty with the
method is the practical limitations of computing
determinants of ill-conditioned matrices. Another

202 Becker and Plumbley

drawback is that the representation learned by
the algorithm, at least on the “viewing parame-
ters” problem, is not all that simple. The features
the network learns to represent are typically each
nonlinear combinations of the viewing parameters
(e.g., scale, location, and size), which cannot eas-
ily be interpreted by themselves.

Source Separation One promising real-world
application for Imax and related methods is in
signal separation, or contrast enhancement of two
sources. This problem is complementary to coher-
ence detection: rather than discovering the com-
mon underlying signal, we want to factor out the
separate components in the two sources. One way
to do this is to try to extract features having min-
imal mutual information; however, we must rule
out trivial solutions in which the features convey
no information at all. Ukrainec and Haykin [75]
have proposed minimizing equation (57), adding a
penalty term p |QY| — 1 to prevent degenerate so-
lutions, where y = [yq,ys]. Ukrainek and Haykin
have applied this idea successfully to the prob-
lem of detecting distinctive features in a pair of
orthogonally polarized radar detectors; the goal
was to detect a reflector target in the dual polar-
ized radar images. By learning the appropriate
nonlinear mapping, this method was able to out-
perform standard linear preprocessing using PCA.
Note that an alternative algorithm for source sep-
aration by Jutten and Herault [34] was discussed
in section 2.3.

5. Conclusions

Unsupervised learning procedures have been ap-
plied to many real-world problems to reduce noise,
compress data, and extract useful features for sub-
sequent classification. We have attempted to pro-
vide a survey of the most widely used and suc-
cessful of these methods, and to highlight meth-
ods that show promise for future work. The ma-
jor challenge for future research in this area is to
develop more powerful learning procedures which
can extract nonlinear features that are applicable
to a variety of signal classification problems.

Acknowledgements

The authors wish to thank Chris Williams, Rich
Zemel, Peter Dayan and the anonymous review-
ers for helpful comments on earlier drafts of this

paper.

References

1. H. M. Abbas and M. M. Fahmy. A neural model
for adaptive Karhunen Loéve transform (KLT). In
Proceedings of the International Joint Conference on
Neural Networks, IJCNN-92 Baltimore, pages 11:975—
980, 1992.

2. J.J. Atick and A. N. Redlich. Predicting ganglion and
simple cell receptive field organizations from informa-
tion theory. Technical Report IASSNS-HEP-89/55,
Institute for Advanced Study, Princeton, 1989.

3. J. J. Atick and A. N. Redlich. Towards a theory of
early visual processing. Neural Computation, 2:308-
320, 1990.

4. P. Baldi and K. Hornik. Neural networks and prin-
cipal component analysis: Learning from examples
without local minima. Neural Networks, 2:53-58,
1989.

5. H. B. Barlow. Unsupervised learning. Neural Com-
putation, 1:295-311, 1989.

6. S. Becker. An Information-theoretic Unsupervised
Learning Algorithm for Neural Networks. PhD thesis,
University of Toronto, 1992.

7. S. Becker. Learning to categorize objects using tem-
poral coherence. In Advances in Neural Information
Processing Systems 5, pages 361-368. Morgan Kauf-
mann, 1993.

8. S. Becker and G. E. Hinton. A self-organizing neural
network that discovers surfaces in random-dot stere-
ograms. Nature, 355:161-163, 1992.

9. S. Becker and G. E. Hinton. Learning mixture models
of spatial coherence. Neural Computation, 5(2):267—
277, 1993.

10. A. J. Bell. Self-organisation in real neurons: Anti-
hebb in ‘channel space’? In Advances in Neural In-
formation Processing Systems 4, pages 59-66. Mor-
gan Kaufmann, 1992.

11. E. L. Bienenstock, L. N. Cooper, and P. W. Munro.
Theory for the development of neuron selectivity; ori-
entation specificity and binocular interaction in visual
cortex. Journal of Neuroscience, 2:32—48, 1982.

12. H. Bourlard and Y. Kamp. Auto-association by mul-
tilayer perceptrons and singular value decomposition.
Biological Cybernetics, 59:291-294, 1988.

13. J.S. Bridle. Probabilistic interpretation of feedforward
classification network outputs, with relationships to
statistical pattern recognition. In F. Fougelman-
Soulie and J. Herault, editors, NATO ASI series on
systems and computer science. Springer-Verlag, 1990.

14. G.A. Carpenter and S. Grossberg. A massively par-
allel architecture for a self-organizing neural pattern
recognition machine. Computer Vision, 37:54-115,
1983.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

G. W. Cottrell, P. W. Munro, and D. Zipser. Image
compression by back propagation: A demonstration
of extensional programming. In N. E. Sharkey, edi-
tor, Advances in Cognitive Science, volume 2. Abbex,
Norwood, NJ, 1989.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Max-
imum likelihood from incomplete data via the EM al-
gorithm. Proceedings of the Royal Statistical Society,
B-39:1-38, 1977.

J. L. Elman. Finding structure in time.
Science, 14:179-211, 1990.

J. L. Elman and D. Zipser. Learning the hidden struc-
ture of speech. ICS Report 8701, Institute of Cogni-
tive Science, University of California, San Diego, 1987.
F. Fallside. On the analysis of multi-dimensional lin-
ear predicitve/autoregressive data by a class of single
layer connectionist models. In IEE Conference on
Artificial Neural Networks, pages 176-180, 1989.

P. Foldidk. Adaptive network for optimal linear fea-
ture extraction. In Proceedings of the International
Joint Conference on Neural Networks, IJCNN-89,
pages 401-405, Washington, DC, 1989.

Y. Freund and D. Haussler. Unsupervised learning
of distributions on binary vectors using 2-layer net-
works. In Advances In Neural Information Processing
Systems 4, pages 912-919. Morgan Kaufmann Pub-
lishers, 1992.

K. Fukushima. Cognitron: A self-organizing multilay-
ered neural network. Biological Cybernetics, 20:121—
136, 1975.

K. Fukushima. Neocognitron: A self-organizing neural
network model for a mechanism of pattern recognition
unaffected by shift in position. Biological Cybernetics,
36:193—202, 1980.

K. Fukushima. A hierarchical neural network model
for associative memory. Biological Cybernetics,
50:105-113, 1984.

C. Galland. Learning in Deterministic Boltzmann
Machine Networks. PhD thesis, University of
Toronto, 1992.

J. J. Gerbrands. On the relationships between
SVD,KLT and PCA. Pattern Recogntion, 14:375-381,
1981.

G. H. Golub and C. F. Van Loan. Matriz Computa-
tions. North Oxford Academic, Oxford, 1983.

R. C. Gonzalez and P. Wintz. Digital Image Process-
ing. Addison-Wesley, Reading, MA, second edition,
1987.

G. E. Hinton and T. J. Sejnowski. Learning and re-
learning in Boltzmann machines. In D. E. Rumelhart,
J. L. McClelland, and the PDP research group, edi-
tors, Parallel distributed processing: Ezxplorations in
the microstructure of cognition, volume I, pages 282—
317. Cambridge, MA: MIT Press, 1986.

K. Hornik and C.-M. Kuan. Convergence analysis of
local feature extraction algorithms. Neural Networks,
5:229-240, 1992.

N. Intrator. Feature extraction using an unsupervised
neural network. Neural Computation, 4(1):98-107,
1992.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E.
Hinton. Adaptive mixtures of local experts. Neural
Computation, 3(1), 1991.

Cognitive

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Unsupervised Learning Procedures 203

M. L. Jordan and R.. A. Jacobs. Hierarchies of adaptive
experts. In Advances in Neural Information Process-
ing Systems 5, pages 985-992. Morgan Kaufmann,
1993.

C. Jutten and J. Herault. Blind separation of sources,
part I: An adaptive algorithm based on enuromimetic
architecture. Signal Processing, 24:1-10, 1991.

C. Jutten and J. Herault. Blind separation of sources,
part II: Problems statement. Signal Processing,
24:11-20, 1991.

J. Karhunen and J. Joutsensalo. Tracking of sinu-
soidal frequencies by neural network learning algo-
rithms. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Process-
ing ICASSP-91, Toronto, Canada, 1991.

T. Kohonen. Clustering, taxonomy, and topological
maps of patterns. In M. Lang, editor, Proceedings of
the Sizth International Conference on Pattern Recog-
nition, Silver Spring, MD, 1982. IEEE Computer So-
ciety Press.

T. Kohonen. The ‘neural’ phonetic typewriter. IEEE
Computer, 21:11-22, 1988.

T. Kohonen and E. Oja. Fast adaptive formation of
orthogonalizing filters and associative memory in re-
current networks of neuron-like elements. Biological
Cybernetics, 21:85-95, 1976.

S. Y. Kung and K. I. Diamantaras. A neural network
learning algorithm for adaptive principal component
extraction (APEX). In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing ICASSP-90, pages 1I: 861-864, 1990.

A. S. Lapedes and R. M. Farber. Nonlinear signal
processing using neural networks: Prediction and sys-
tem modelling. Technical Report LA-UR-87-2662,
Los Alamos National Laboratory, 1987.

T. K. Leen. Dynamics of learning in linear feature-
discovery networks. Network, 2:85-105, 1991.

T. K. Leen, M. Rudnick, and D. Hammerstrom. Heb-
bian feature discovery improves classifier efficiency. In
Proceedings of the International Joint Conference on
Neural Networks, IJCNN-89, pages I: 51-56, Wash-
ington, DC, 1989.

R. Linsker. Self-organization in a perceptual network.
IEEE Computer, 21(3):105-117, March 1988.

R. Linsker. Deriving receptive fields using an optimal
encoding criterion. In Adwvances in Neural Informa-
tion Processing Systems 5, pages 953-960. Morgan
Kaufmann, 1993.

S.P. Luttrell. Hierarchical vector quantisation. In
Proceedings of the Inst. of Elec. Eng., volume 136,
pages 405-413, 1989.

M. C. Mozer. Discovering discrete distributed rep-
resentations with iterative competitive learning. In
Advances in Neural Information Processing Systems
3, pages 627-634. Morgan Kaufmann, 1991.

M. C. Mozer. Induction of multicale temporal struc-
ture. In Advances in Neural Information Processing
Systems 4, pages 275-282. Morgan Kaufmann, 1992.
M. C. Mozer. Neural net architectures for temporal
sequence procesing. In A. Weigend and N. Gershen-
feld, editors, Predicting the future and undertanding
the past. Redwood City, CA: Addison-Wesley Pub-
lishing, 1993.

204

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Becker and Plumbley

R. M. Neal. Connectionist learning of belief networks.
Artificial Intelligence, 56:71-113, 1992.

R. M. Neal and G. E. Hinton. A new view of the EM
algorithm that justifies incremental and other vari-
ants. Submitted for publication.

S. J. Nowlan. Maximum likelihood competitive learn-
ing. In D. S. Touretzky, editor, Neural Information
Processing Systems, Vol. 2, pages 574-582, San Ma-
teo, CA, 1990. Morgan Kaufmann.

S. J. Nowlan. Soft Competitive Adaptation: Neural
Network Learning Algorithms based on Fitting Sta-
tistical Miztures. PhD thesis, Carnegie-Mellon Uni-
versity, Pittsburgh PA, 1991. Also published as CMU
Technical Report CMU-CS-91-126.

E. Oja. A simplified neuron model as a principal com-
ponent analyser. Journal of Mathematical Biology,
15:267-273, 1982.

E. Oja. Neural networks, principal components, and
subspaces. International Journal of Neural Systems,
1(1):61-68, 1989.

E. Oja. Principal components, minor components,
and linear neural networks. Neural Networks, 5:927—
935, 1992.

E. Oja and J. Karhunen. On stochastic approximation
of the eigenvectors and eigenvalues of the expectation
of a random matrix. Journal of Mathematical Anal-
ysis and Applications, 106:69-84, 1985.

E. Oja, H. Ogawa, and J. Wangviwattana. PCA in
fully parallel neural networks. In I. Aleksander and
J. Taylor, editors, Artificial Neural Networks, 2, pages
199-202, Amsterdam, 1992. North-Holland.

J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference. San Mateo,
California: Morgan Kaufmann, 1988.

B. A. Pearlmutter and G. E. Hinton. G-maximization:
An unsupervised learning procedure for discovering
regularities. In J. S. Denker, editor, Neural Networks
for Computing: American Institute of Physics Con-
ference Proceedings 151, pages 333-338, 1986.

C. Peterson and J. R. Anderson. A mean field the-
ory learning algorithm for neural networks. Complez
Systems, 1:995-1019, 1987.

C. Peterson and E. Hartman. Explorations of the
mean field theory learning algorithm. Neural Net-
works, 2:475, 1989.

M. D. Plumbley. Efficient information transfer and
anti-Hebbian neural networks. Neural Networks,
6(6):823-833, 1993.

M. D. Plumbley. A Hebbian/anti-Hebbian network
which optimizes information capacity by orthonor-
malizing the principal subspace. In Proceedings of the
IEE Artificial Neural Networks Conference, ANN-93,
pages 86—90, Brighton, UK, May 1993.

M. D. Plumbley and F. Fallside. An information-
theoretic approach to unsupervised connectionist
models. In David Touretzky, Geoffrey Hinton, and
Terrence Sejnowski, editors, Proceedings of the 1988
Connectionist Models Summer School, pages 239-
245. Morgan-Kaufmann, San Mateo, CA, 1988.

J. Rubner and P. Tavan. A self-organizing network
for principal component analysis. FEurophysics Let-
ters, 10:693-698, 1989.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error propaga-
tion. In D. E. Rumelhart and J. L. McClelland, edi-
tors, Parallel Distributed Processing: Ezplorations in
the Microstructure of Cognition, volume 1, pages 318-
362. MIT Press, Cambridge, MA, 1986.

D. E. Rumelhart and D. Zipser. Competitive learning.
Cognitive Science, 9:75-112, 1985.

T. D. Sanger. Optimal unsupervised learning in a
single-layer feedforward neural network. Neural Net-
works, 2:459-473, 1989.

E. Saund. Dimensionality-reduction using connec-
tionist networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 11(3):304-314,
1989.

J. Schmidhuber. Learning factorial codes by pre-
dictability minimization. Neural Computation, 4:863—
879, 1992.

J. Schmidhuber. Learning unambiguous reduced se-
quence decriptions. In Advances in Neural Informa-
tion Processing Systems 4, pages 291-298. Morgan
Kaufmann, 1992.

N. N. Schraudolph and T. J. Sejnowski. Competi-
tive anti-hebbian learning of invariants. In Advances
in Neural Information Processing Systems 4, pages
1017-1024. Morgan Kaufmann, 1992.

C. E. Shannon. A mathematical theory of commu-
nication. Bell System Technical Journal, 27:379—
423,623-656, 1948.

A. Ukrainec and S. Haykin. Application of unsuper-
vised neural networks to the enhancement of polar-
ization targets in dual-polarized radar images. In
IEEE Canadian Confrernce on Elecrtical and Com-
puter Engineering, 1991.

C. von der Malsburg. Self-organization of orientation
sensitive cells in striate cortex. Kybernetik, 14:85-100,
1973.

S. Watanabe. Pattern Recognition: Human and Me-
chanical. John Wiley & Sons, New York, 1985.

A. S. Weigend, B. A. Huberman, and D. E. Rumel-
hart. Predicting the future: A connectionist approach.
International Journal of Neural Systems, 1:193-209,
1990.

R. J. Williams. Feature discovery through error-
correction learning. ICS Report 8501, Institute
of Cognitive Science, University of California, San
Diego, 1985.

R. Zemel and G. E. Hinton. Developing topographic
representations by minimizing description length. In
J. D. Cowan, G. Tesauro and J. Alspector, editors,
Advances in Neural Information Processing Systems
6, pages 11-18. Morgan Kaufmann, 1994.

R. S. Zemel and G. E. Hinton. Discovering viewpoint-
invariant relationships that characterize objects. In
R. P. Lippmann, J. E. Moody, and D. S. Touretzky,
editors, Advances In Neural Information Processing
Systems 3, pages 299-305. Morgan Kaufmann Pub-
lishers, 1991.

Suzanna Becker is an assistant professor of Psychol-
ogy and is Programme Co-ordinator for the Honours
Degree in Neural Computation at McMaster Univer-
sity, Hamilton, Ontario. Her research interests include
unsupervised learning algorithms, information theory,
statistical mixture models, and models of cortical plas-
ticity, perceptual development, and human memory.

Dr. Becker received the BA degree (1982) from
Queen’s University in Psychology, the MSc degree
(1985) from Queen’s University in Computer Science,
and the PhD degree (1992) from the University of
Toronto in Computer Science.

Unsupervised Learning Procedures 205

Mark Plumbley is a Lecturer in the Department of
Electronic and Electrical Engineering at King’s Col-
lege London. He is Deputy Director of the EC-funded
“NEuroNet” Network of Excellence in Neural Net-
works, and Treasurer of the European Neural Network
Society. His research interests include the use of infor-
mation theory in neural networks, unsupervised learn-
ing, perceptual systems and genetic algorithms.

Dr. Plumbley received the BA degree (1984) from
the University of Cambridge (Churchill College) in
Electrical Science Tripos and the PhD (1991) from
the University of Cambridge Department of Engineer-
ing in Neural Networks.

