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Numerous single-unit recording studies have found mammalian hip-
pocampal neurons that fire selectively for the animal’s location in space,
independent of its orientation. The population of such neurons, com-
monly known as place cells, is thought to maintain an allocentric, or
orientation-independent, internal representation of the animal’s location
in space, as well as mediating long-term storage of spatial memories.
The fact that spatial information from the environment must reach the
brain via sensory receptors in an inherently egocentric, or viewpoint-
dependent, fashion leads to the question of how the brain learns to
transform egocentric sensory representations into allocentric ones for
long-term memory storage. Additionally, if these long-term memory rep-
resentations of space are to be useful in guiding motor behavior, then
the reverse transformation, from allocentric to egocentric coordinates,
must also be learned. We propose that orientation-invariant representa-
tions can be learned by neural circuits that follow two learning princi-
ples: minimization of reconstruction error and maximization of repre-
sentational temporal inertia. Two different neural network models are
presented that adhere to these learning principles, the first by direct opti-
mization through gradient descent and the second using a more biologi-
cally realistic circuit based on the restricted Boltzmann machine (Hinton,
2002; Smolensky, 1986). Both models lead to orientation-invariant repre-
sentations, with the latter demonstrating place-cell-like responses when
trained on a linear track environment.

1 Introduction

Animals are often faced with the challenging task of deciding how to act
in the absence of complete sensory information, for example, when nav-
igating toward an unseen goal. Instead they must rely on internal repre-
sentations of object locations within their environment. From numerous
electrophysiological and behavioral studies, it has become clear that space
is represented in multiple reference frames across many different brain
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regions. Such representations can be divided into two general classes: al-
locentric or orientation-independent representations and egocentric repre-
sentations. For example, orientation-invariant hippocampal place cells fire
selectively for a rat’s location in space (e.g., O’Keefe, 1976) but show little
dependence on the animal’s orientation in the open field (Muller, Bostock,
Taube, & Kubie, 1994). Place cells have also been found in the hippocampus
of nonhuman primates (Matsumura et al., 1999; Ono, Nakamura, Nishijo, &
Eifuku, 1993) and humans (Ekstrom et al., 2003). More recently, orientation-
invariant grid cells, which fire selectively at the vertices of a triangular
lattice covering the environment, have been found in the medial entorhinal
cortex of rats (Hafting, Fyhn, Molden, Moser, & Moser, 2005; Sargolini et al.,
2006). In addition, representations of orientation independent of location
have been found in head direction cells (see, e.g., Taube, 1998), which are
located in various brain regions including the anterior thalamus. Finally,
viewcells, which fire when an animal is looking at a given object or location
from a range of vantage points, have also been found in the hippocampal
region in both nonhuman (Matsumura et al., 1999; Rolls & O’Mara, 1995)
and human primates (Ekstrom et al., 2003). Furthermore, numerous studies
on human and nonhuman animals with hippocampal or medial temporal
lobe (MTL) lesions have left little doubt that these structures are critical for
performing a variety of spatial memory tasks, especially those involving
viewpoint changes, and after medium to long time delays between encod-
ing and retrieval (see, e.g., Barnes, 1988; Bohbot et al., 1998; Crane & Milner,
2005; Jarrard, 1993; King, Burgess, Hartley, Vargha-Khadem, & O’Keefe,
2002; Morris, Garrard, Rawlins, & O’Keefe, 1982; see Burgess, Maguire, &
O’Keefe, 2002, for a review).

Unlike allocentric representations of space, which are supported primar-
ily by MTL structures, egocentric representations are common in various
neocortical regions, including motor and sensory cortices. For example, the
posterior parietal cortices appear to represent the locations of objects in
combinations of reference frames, such as retinotopic modulated by head
direction (Zipser & Andersen, 1988) or retinotopic modulated by body di-
rection within the room (Snyder, Grieve, Brotchie, & Andersen, 1998). The
relative contribution of egocentric and allocentric representations to spa-
tial memory might depend on the timescale of the task concerned (see, e.g.,
Milner, Paulignan, Dijkerman, Michel, & Jeannerod, 1999). Short-term reten-
tion of perceptual information for the purpose of immediate action will be
best served by egocentric representations appropriate to the corresponding
sensory and motor systems. By contrast, long-term memory for locations
will be best served by allocentric representations because the location and
configuration of the body during retrieval generally will not be the same
as during encoding (see Burgess, Becker, King, & O’Keefe, 2001, for fur-
ther discussion). This view is consistent with single unit recording results
from monkey dorsolateral prefrontal and posterior parietal cortices that
suggest spatial working memory is indeed egocentric in nature (Chafee &
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Goldman-Rakic, 1998; Funahashi, Bruce, & Goldman-Rakic, 1989), whereas
medium- to long-term spatial representations in the MTL are allocentric, as
described above.

In summary, long-term spatial memory seems to rely heavily on allocen-
tric MTL representations, while short-term memory may consist of egocen-
tric representations maintained in frontoparietal cortical circuits, with pari-
etal cortex maintaining representations in multiple frames. The existence of
egocentric representations is not surprising given that sensory information
arrives at the brain in an intrinsically viewpoint- or body-configuration-
dependent fashion. However, allocentric representations must arise indi-
rectly via transformation of egocentric sensory or internal representations.
Elsewhere (Becker & Burgess, 2001; Byrne, Becker, & Burgess, 2007; Byrne
& Becker, 2004), we have presented neural circuit models that accomplish
such transformations. However, an important question not addressed in our
previous work is how such transformations can be learned. Numerous neu-
ral network models have addressed how coordinate transformations might
be accomplished in parietal cortex, (see, e.g., Pouget & Sejnowski, 1997;
Salinas & Abbott, 1996); however, not all of these models address learning,
and when they do, they focus on transformation from one type of egocentric
reference frame to another (see, e.g., Deneve, Latham, & Pouget, 2001; Maz-
zoni, Andersen, & Jordan, 1991; Xing & Andersen, 2000; Zipser & Andersen,
1988). Other neural models have attempted to address the learning of place
cell responses from purely egocentric input (see, e.g., Sharp, 1991), or from
spatial geometric information already transformed partially into an allo-
centric frame (see, e.g., Kali & Dayan, 2000). Trullier, Wiener, Berthoz, and
Meyer (1997) has reviewed a number of navigation models, many of which
rely on a transformation from egocentric to allocentric representations of
space. As with other models of place cell learning, none of these learns the
full inverse transformation that would allow the entire egocentric geometry
of an environment to be recovered from the corresponding allocentric repre-
sentation. This inverse transformation is essential for mental imagery of re-
trieved memories and long-term-memory-guided navigation. We now pro-
pose two simple principles that may underlie the learning of full egocentric-
allocentric transformation ability. The issue of how the orientation-invariant
representations generated by the application of these principles might
relate to grid cells and place cells will be addressed briefly in the
discussion.

The first principle, which we refer to as the minimization of reconstruction
error, is based on the observation that if the brain transforms an egocen-
tric representation of space into an allocentric one for long-term storage,
then it must be able to recover the original egocentric information from
the stored allocentric information in order to drive sensory-motor circuits.
The second principle, which we refer to as the maximization of temporal
inertia, is motivated by electrophysiological evidence for neurons with sus-
tained response properties in various MTL structures. For example, Redish,
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McNaughton, and Barnes (2000) found that when rats shuttled back and
forth along a linear track, many place cells were directionally tuned and
either ceased or began firing after a change of direction; moreover, those
that began firing after a direction change did so abruptly, while those that
ceased firing did so more gradually, exhibiting inertia. Further evidence for
temporal inertia comes from unit recordings performed in slice prepara-
tions of rat entorhinal cortex. When bathed in carbachol, an acetylcholine
receptor agonist, neurons in deep layers of entorhinal cortex demonstrated
strong resistance to changes in their firing rates (Egorov, Hanmam, Fransen,
Hasselmo, & Alonso, 2002). This finding is particularly relevant given the
evidence that encoding processes in MTL structures may be facilitated by el-
evated levels of acetylcholine (for an excellent review, see Hasselmo, 1999).
Thus, we suggest that MTL representations vary as slowly as possible in
time.

We now describe a set of simulations of neural networks with a simple
architecture that can learn to generate orientation-independent representa-
tions of simple environments when learning is based on the two principles
presented above. The first model we describe is trained using learning
equations derived by direct minimization of a cost function based on these
principles. The purpose of simulations with the first model was to show
that the two learning principles were sufficiently constraining to result in
orientation-independent representations. We then describe a second neural
network model that is trained using more biologically plausible, contrastive
Hebbian learning in a restricted Boltzmann machine (RBM) architecture
(Hinton, 2002). The learning rules for training an RBM also have a clear
statistical interpretation that is roughly equivalent to our first principle of
minimizing reconstruction error. By adding a temporal inertia constraint to
this model, we hypothesized that orientation-independent representations
of space would emerge.

2 Simulation 1: Cost Function Method Applied to a Simple
Linear Environment

2.1 Methods.

2.1.1 Model Architecture and Neural Dynamics. The model architecture,
depicted in Figure 1, is based on a transformation circuit presented by
Byrne et al. (2007). The input layer of neurons maintains a continuously up-
dated egocentric representation of the environmental geometry about the
model during simulated navigation. This spatial information is represented
in a head-centered reference frame, in which the model’s location and head
direction are always fixed. Given this choice of reference frame and addi-
tional input from a population of head direction cells, the transformation
from an egocentric to an orientation-independent reference frame can be
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Figure 1: Schematic of the overall model architecture. During a bottom-up
cycle, all connections represented by solid black arrows are active. Thus,
head-centered egocentric representations are driven by input from the dor-
sal visual stream that, along with head direction cell input, drives medial
temporal activity via a transformation layer. During a top-down cycle, con-
nections represented by vertical solid arrows become downregulated while
connections represented by dashed arrows become upregulated. Thus, in
this phase, egocentric representations are driven by MTL and head direction
activity.

accomplished. We assume that such a transformation must take place in
the brain, based on the evidence for head direction cells, place cells, grid
cells, and the numerous egocentric reference frames in which representa-
tions of space are found to exist in posterior parietal and frontal cortical
areas.

The head-centered egocentric representation of the environment, com-
bined with the activity of the head direction cells, provides the information
required to transform this representation into an orientation-independent
one. Hence, our model contains a layer of transformation neurons that are
driven by the combined activity of the head direction cells and the egocen-
tric layer neurons. Activity from the transformation layer feeds forward to a
layer of MTL neurons that should, in principle, be able to learn orientation-
invariant representations. For neurons in all layers except the egocentric
input layer, the firing rate of the ith neuron in layer α is a sigmoid function
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Figure 2: Schematic of the very simple linear environment. Each possible tra-
versed location is represented by a filled circle, while each possible head direc-
tion at a given location is represented by a solid line segment emanating from
the circle representing that location. The dashed line indicates the path followed
by the model from left to right.

of the summed weighted activities of the presynaptic neurons;

Rα
i = 1

1 + e− ∑
j w

β

i j Rβ

j

, (2.1)

where α represents either the transformation layer or the MTL layer; β

represents an incoming weight from either (1) the head direction cell layer
and the egocentric layer or (2) the transformation layer, depending on the
value of α; w

β

i j is the connection strength from neuron j in layer β to
neuron i in layer α; and Rβ

j is the firing rate of neuron j in layer β. In this
simulation, rate-coded neurons are employed, and the firing rate, R, is an
abstract representation of how much activity a neuron exhibits based on
presynaptic activity. In simulations 2 and 3, binary stochastic neurons are
employed, and this firing rate will be replaced with a firing state, S, which
takes on a value of one or zero, depending on whether a neuron fires on a
given time step.

So far, we have discussed how the model operates in bottom-up mode,
whereby incoming sensory information drives egocentric representations
that in turn drive representations in the MTL component of the model.
In addition, the model can operate in a top-down fashion in which MTL
and head direction cell activity drive activity in the egocentric layer via
the transformation layer. Thus, after learning, the model should be able to
reconstruct egocentric representations of space from allocentric representa-
tions in long-term memory, given a particular head direction.

2.1.2 Cost Function Minimization. In simulation 1, the model was trained
on the simple, abstract linear environment depicted in Figure 2. This en-
vironment consisted of six locations, each with two head directions. The
12 head-centered egocentric representation vectors, one for each conjunc-
tion of location and head direction (this conjunction will be referred to
as a viewpoint from this point on), were chosen to be four-element, real-
valued vectors with the correlational structure shown in the top panel of
Figure 3. Specifically, they were chosen so that the overlap between vectors
(measured as cosine of angle between vectors) corresponding to nearby
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Figure 3: (Top) The filled diamonds represent the average overlap between
pairs of (four-element, real-valued) egocentric representation vectors for the
very simple linear environment when separated by n neighbors through pure
translation; plotted as a function of n. Overlap is measured as the cosine of
the angle between the vectors. The dotted line represents the average overlap
between pairs of random vectors, while the dashed line represents the average
overlap between pairs of egocentric representation vectors differing in rotation
at the same location. (Bottom) Orientation-invariance results for the model
trained to minimize the cost function given by equation 2.2 on the simple
linear track environment. The diamonds are DE (n), our measure of orientation
invariance for egocentric representations, while the curve with error bars is
DM(n), our measure of orientation invariance for MTL representations. Error
bars represent standard error of the mean calculated across ten networks trained
with random initial conditions.

locations with the same head direction was large and fell off with increas-
ing translational separation, while overlap between vectors corresponding
to the same location but different headings had a constant, intermediate
value of just under 0.75, regardless of location. Also, for this simulation, the
head direction variable could take on one of only two values, so that the
model’s current head direction was represented by the firing of one of two
head direction neurons. We do not consider what drives the head direction
system, but we do assume that it is reliable in the sense that it will orient the
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model consistently within a particular environment whenever it is placed
in the same location with the same input cues.

A constant speed trajectory through the environment can be represented
by the ordered set of coordinates, τ = {xi }N

i=1, where xi represents the con-
junction of the model’s position coordinates and heading direction (i.e.,
viewpoint) at discrete time, i . Our two learning principles can now be in-
corporated explicitly into the following cost function,

C(τ ) =
N∑

i=1

{
[E(xi ) − Er (xi )]2 +

[
M(xi ) − M(xi−1)

M(xi )

]2
}

, (2.2)

where E(x) is the egocentric representation vector at x, Er is the model’s
reconstruction of E , and M (x) is the MTL representation generated by the
model at x. Here, reconstruction error is penalized directly by the first term
on the right-hand side, while the second term penalizes changes in MTL
activity from one point along the trajectory to the next.

In simulation 1, the model was trained on the simple linear environment
by performing gradient descent on the cost function given by equation 2.2 as
the model navigated from the left-most position to the right-most position
of the simple linear environment. Navigation within this environment con-
sisted of steps that alternated between those in which the model hopped
from its current location to the rightward neighboring location while its
head direction was randomized, and those in which it maintained its cur-
rent location and switched head directions. This process resulted in 64 pos-
sible unique left-to-right trajectories through the environment. Each term
in the summation of equation 2.2 corresponds to one step in the navigation
process and was calculated immediately after one bottom-up followed by
one top-down cycle was performed at that step’s corresponding location;
at the same time, the gradient of that term was calculated analytically. Al-
though weights could have been updated in an online fashion after each
such navigation step, we found that this approach led to large fluctuations
in the cost function. Instead, the total gradient of equation 2.2 was calcu-
lated by accumulating the individual gradients over five full left-to-right
traversals of the environment before performing a single weight update
step. Weight updates were performed based on the total gradient using
the RPROP algorithm (Riedmiller & Braun, 1993), a more efficient ver-
sion of the well-known backpropagation algorithm (LeCun, 1985; Parker,
1985; Rumelhart, Hinton, & Williams, 1986; Werbos, 1974), with parame-
ters η+ = 1.2, η− = 0.5,�max = 1, and �0 = 0.001. The RPROP algorithm
employs a variable step size for each component of the gradient, with η+/−

determining how much the step size for a given component should increase
or decrease from one step to the next, with �max being the largest possible
step size for any component, and with �0 being the initial step size for all
components.
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2.1.3 Data Analysis. To evaluate the effectiveness of the learning algo-
rithm in generating allocentric representations, a measure of orientation
invariance for MTL representations was required. We chose a measure of
how different, on average, MTL representations are from each other when
separated by a pure rotation, as compared with how different they are
on average when separated by a pure translation step through n neigh-
bors. This measure will be low, indicating allocentricity, if representations
vary relatively little across rotations at a given location and relatively more
across neighboring locations. Although locations within the simple linear
environment were not associated with specific Cartesian coordinates, loca-
tions within the environments used for simulations 2 and 3 were. Moreover,
the environment used for simulation 3 was two-dimensional. Therefore, the
measure of orientation invariance is presented now in the general form. It
is given by

DM (n) =
√

〈[M (r, θ ) − M (r, θ ′)]2〉r,θ,θ ′

〈[M (r, θ ) − M (r + n, θ )]2〉r,θ,n̂
, (2.3)

where M is a vector of activations in the MTL region of the model, r is
the vector of Cartesian coordinates of an environmental grid point, θ and
θ ′ are two unequal head directions, n is a vector from r to an nth nearest
neighbor (n = 1 for nearest neighbor, 2 for next nearest, and so on), n̂ is
a unit vector pointing to a neighbor, and 〈. . .〉 indicates averaging with
respect to the subscripts. For orientation-invariant representations, DM (n)
should be much smaller than one, especially for large values of n. As a
basis for comparison, the relative difference measure of equation 2.3 can
be applied to the various egocentric representations of the environment
as well. We denote the latter case by DE (n) and expect that orientation-
invariant MTL representations would also satisfy DM (n) � DE (n). For the
current environment, each average in equation 2.3 was calculated with 5000
random samples.

2.2 Results. Initially the egocentric-to-transformation layer and
transformation-to-MTL layer weights were set to random values between
−0.2 and 0.2, while head direction-to-transformation layer weights were
set to random values between −2 and 2. These values were chosen because
they were found to generate reasonable levels of activity in all layers when
the model was presented with egocentric and head direction input. The
initial head direction-to-transformation layer weights were chosen from a
larger range than the other weights so that the activity of head direction
neurons, which were fewer in number than were the egocentric neurons,
could have an influence on transformation layer activity comparable to that
of activity from the egocentric layer.
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Orientation-invariance results averaged over 10 sets of random initial
conditions for a network with eight transformation units and four MTL
units are shown in the bottom panel of Figure 3. Notice that DM is small
compared to DE and is also much smaller than one. Therefore, MTL repre-
sentations are much more orientation-invariant than the representations at
the egocentric input layer.

2.3 Larger Environments. In preliminary simulations we used the cost
function minimization approach to train the transformation model on a
more complex environment than that used for simulation 1. Egocentric
representations for this environment were derived directly from the con-
figuration of rectilinear boundaries that specified its geometry (a set of
three interconnected “rooms”) using a process described in the next sec-
tion. Starting from random initial weights chosen from reasonable ranges,
training tended to lead to local minima in which MTL representations did
not demonstrate orientation invariance. Performing the minimization as
described above was also costly in terms of time, and we therefore did
not attempt any computationally intensive global optimization procedures
(annealing, for example). Instead, we were able to show that weights that
were precalculated to generate orientation invariance in MTL representa-
tions (taken from Byrne et al., 2007) represent a local minima of the cost
function, thereby demonstrating that our principles are consistent with the
learning of such representations.

3 Simulation 2: RBM Method Applied to Linear Environment

3.1 Methods. Training our transformation circuit by following the neg-
ative gradient of equation 2.2 is problematic in at least two ways. First, the
learning rules resemble those of backpropagation and thus do not resem-
ble any biological process known to occur in the brain. Second, it appears
that the learning is highly susceptible to becoming trapped in poor local
minima in all but the simplest of abstract environments. In this section we
demonstrate that training the circuit as two “stacked” restricted Boltzmann
machines alleviates these problems.

3.1.1 RBM Learning Rule. A restricted Boltzmann machine, or RBM
(Smolensky, 1986) is a special case of the Boltzmann machine (Ackley,
Hinton, & Sejnowski, 1985) with two interconnected layers and no within-
layer connections. We use two stacked layers of RBMs here (Hinton, Osin-
dero, & Teh, 2006) with stochastic binary units, each of which can take on a
value, or firing state, of zero or one (see Figure 4). In such a network, a neu-
ron in the visible layer is connected to all neurons in the hidden layer but
to none of the other visible neurons. Similarly, a neuron in the hidden layer
is connected to all visible units but to none of the hidden units. Weights in
the network are symmetric so that the connection strength from unit i to
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Figure 4: Schematic of an RBM network. In a bottom-up cycle, data are clamped
onto visible units, and a hidden state is generated. In a top-down cycle, a hidden
state is clamped, and a visible state is generated.

unit j is equal in value to the connection strength from unit j to unit i . In
terms of dynamics, the probability that a given neuron will fire at a given
time step is determined by the firing state of all of the other neurons at the
previous time step. In particular, this probability is a sigmoid function of
the weighted summed input to the neuron and is given by

pα
i = 1

1 + e− ∑
j w

β

i j Sβ

j

, (3.1)

where all symbols have the same meaning as in equation 2.1, except that
the firing rate R has been replaced with firing probability p on the left-
hand side and with firing state S on the right-hand side. Since there are no
intralayer connections in an RBM, hidden activity is determined solely by
visible activity and vice versa. Thus, given the firing states of one layer, the
probabilities of each of the units firing in the other layer are conditionally
independent, and the joint probability of the entire layer can therefore be
calculated in a single step. If this alternating process is continued, then a
global equilibrium state will eventually be reached. Hinton (2002) derived
learning rules for this network such that the trained network, under the re-
peated alternating Gibbs sampling procedure just described, will produce
visible states with probabilities similar to that with which they occur in
the training set. Moreover, the learning rules can be shown to minimize a
term closely related to reconstruction error (Hinton, 2002). Thus, if a data
vector is clamped onto the visible units after training and a hidden state
is calculated from it, then clamping this hidden state will generate a visi-
ble state that is highly similar to the original data vector. Although RBMs
resemble another neural network architecture, the bidirectional associa-
tive memory (BAM) network of Kosko (1988), the former “discover” their
own nonunique internal (hidden) representations of data while the latter
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heteroassociative networks must be trained with fully specified pairs of
neural activation vectors. As will become clear, the flexible nature of RBM
learning is necessary for our current purposes.

The RBM learning rule involves a two-phase learning procedure and
consists of the weight update equation given by

�wi j = η(〈Si Sj 〉d − 〈Si Sj 〉d̂ ), (3.2)

where wi j is the weight connecting neurons i and j , η is a learning rate
parameter, Si is the firing state of the ith neuron 〈. . .〉d represents averaging
over the data distribution in the Hebbian phase, and 〈. . .〉d̂ represents av-
eraging over one-step reconstructions obtained in the anti-Hebbian phase
(explained below). The Hebbian phase correlation is calculated by repeat-
edly clamping the states of the visible units to a data vector randomly
sampled from the data set, calculating a corresponding hidden state, and
averaging the resulting correlations. Starting from the hidden unit state ob-
tained in the Hebbian phase, the anti-Hebbian phase states are obtained by
updating the states of the visible units once to obtain data reconstructions
and then updating the hidden units once. The resulting correlations are
obtained by averaging across states obtained in this manner from one-step-
away reconstructions of data vectors.

In practice, rather than averaging across many data vectors, equation 3.2
can be implemented online by updating the weights after each sample,
with Hebbian updates interleaved with anti-Hebbian updates. Unless an
RBM has learned a data distribution perfectly, it is clear that a data vector
reconstructed by the network will be contaminated with preexisting corre-
lations arising from the original untrained weights, as well as correlations
due to other subsequently learned data vectors. Thus, the stochastic Heb-
bian updates of the RBM learning procedure build data correlations into the
network, while the anti-Hebbian updates remove interfering correlations.

3.1.2 Acetylcholine and Temporal Inertia. Hasselmo and McGaughy (2004)
provide a detailed review of evidence suggesting that acetylcholine might
mediate a two-phase learning process in the brain that strongly parallels the
RBM rules. In particular, when acetylcholine levels are high, as observed in
active wakefulness, neural activity in neocortical and MTL areas is influ-
enced strongly by sensory afferents, and long-term potentiation is facilitated
in various hippocampal structures. However, when acetylcholine levels are
low, as observed during quiet wakefulness or non-REM sleep, the influence
of sensory input on neocortical and MTL activity is reduced relative to the
influence of feedback processes. Thus, Hasselmo and McGaughy suggest
that these high and low acetylcholine states correspond to bottom-up learn-
ing and top-down consolidation, respectively. Consistent with these ideas,
Foster and Wilson (2006) have found that place cell activity recorded as a
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rat traverses a linear track immediately replays itself in reverse when the
animal rests at the end of the track.

Interestingly, conditions of high acetylcholine levels appear to corre-
spond to the electrophysiological findings of high temporal inertia as dis-
cussed in section 1. In particular, the inertia-like processes in entorhinal
cortex slice preparations (Egorov et al., 2002) were observed in the presence
of carbachol, while the inertia-like neuronal properties in rat hippocam-
pus (Redish et al., 2000) were observed when the animal was engaged in
active exploration (although the possibility of an inertia-like effect during
rest was not investigated in this case). Therefore, during active exploration,
when acetylcholine levels are high and when we hypothesize Hebbian
learning would occur, the presence of inertia in MTL neural firing rates
should promote a build-up of correlations between MTL representations
for neighboring viewpoints. This, in turn, should result in slowly vary-
ing representations and potentially encourage orientation invariance. The
details of our implementation of temporal inertia are described below.

3.1.3 Egocentric Representation. Egocentric representations of the envi-
ronments used for simulations 2 and 3 were derived using a method based
on the boundary vector cell model of Hartley, Burgess, Lever, Cacucci, and
O’Keefe (2000). To illustrate the exact nature of these representations, we
first consider the situation depicted in Figure 5. Here, environmental bound-
aries are represented by the gray “walls,” while the model’s current location
and head direction are represented by the black line segment. We discretize
the boundaries into a set of line segments with a resolution of 10 segments
per unit length. The boundary segments that are visible from the model’s
current location are shown in the egocentric reference frame, in which the
model always faces along the positive y-axis, in the top panel of Figure 6 as
open circles. This information can be transformed into a pattern of neural
firing probabilities by forming a one-to-one correspondence between the
set of egocentric layer neurons and a set of points on a radial grid centered
at the model’s current location, shown as filled circles in the top panel of
Figure 6. The firing probability of the ith neuron due to the presence of the
j th boundary segment is a gaussian function of the distance between the
boundary segment location and the neuron’s preferred location;

pEgo
i = 1

r j
e−(r0

i −r j )2− (θ0
i −θ j )2

2(π/20)2 , (3.3)

where pEgo
i is the firing probability for the ith egocentric neuron when

driven by sensory input, (r j , θ j ) are the radial coordinates of the j th
boundary segment in the egocentric reference frame, and (r0

i , θ0
i ) are the

coordinates of a location where a boundary segment would have to be
in order to elicit maximal firing from the ith egocentric neuron. The total
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Figure 5: Schematic of a square environment. Thick gray lines represent bound-
aries (walls, for example), and filled black circles represent possible locations
for the model. The black line segment extending from one location indicates
that the model is at that location facing the direction in which the bar extends.
Note: The possible model locations are offset slightly from center because they
were determined automatically by an algorithm designed to accomplish this
task for environments of arbitrary shape and size. There is no reason to expect
this to affect the results obtained here in any way.

firing probability of the ith egocentric layer neuron due to the perceived
environmental geometry is calculated by summing the contributions of
all boundary segments to a maximum value of one, The information de-
picted in Figure 5 and the top panel of Figure 6 is shown in the bottom
panel of the latter figure as neural firing probabilities calculated from
equation 3.3.

3.1.4 Training Procedure. For this simulation we trained our transfor-
mation circuit on the linear track environment shown in Figure 7. Strong
inhibitory connections from the head direction cell layer to the transfor-
mation layer were assumed to preexist. Accordingly, these weights were
set so as to divide the transformation layer into as many equal-sized func-
tional subsets as there are head directions, with one unique subset cor-
responding to each head direction. Thus, when the model takes on one
of the available head directions, activity from the corresponding head di-
rection cell strongly inhibits all activity in the transformation layer except
for that of the appropriate subset. We trained the two layers of weights
(egocentric-to-transformation and transformation-to-MTL layer weights)
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Figure 6: (Top) Open circles represent boundary segments that can be viewed
from the model’s location in Figure 5. These segments are shown in the model’s
egocentric reference frame in which the model itself is always located at the
origin facing along the positive y-axis, as indicated by the arrow. Each filled
circle on the radial grid corresponds to a neuron in the egocentric layer and is
plotted at the position where a boundary segment would have to be in order to
elicit maximal firing from the corresponding neuron. (Bottom) Relative firing
probabilities of the egocentric layer neurons plotted at their corresponding grid
points for the boundary configuration shown in the top panel.

in two separate navigation phases, treating the model as two stacked RBMs
as described by Hinton et al. (2006). During the first exposure to the envi-
ronment, the egocentric-to-transformation layer connections were trained
using the RBM rules, with the egocentric layer representation of the current
viewpoint acting as the visible layer data vector and the transformation
layer acting as the hidden layer. For convenience, we used the online ver-
sion of contrastive Hebbian learning described above, performing both a
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Hebbian and an anti-Hebbian update of the weights at each step in the
navigation. However, it is possible that the brain might employ these two
learning phases in separate blocks, with Hebbian updates occurring dur-
ing active exploration and anti-Hebbian updates occurring during quiet
wakefulness or non-REM sleep. During the second exposure to the envi-
ronment, the egocentric-to-transformation layer weights were kept fixed
so that the transformation layer activations acted as fixed data vectors for
training the transformation-to-MTL weights using the RBM rules, with
the transformation layer acting as the visible layer and the MTL layer
acting as the hidden layer. Training then proceeded in exactly the same
way as for the egocentric-to-transformation layer weights, except that the
effect of temporal inertia in the MTL neurons was added as described
below.

While training the second half of the stacked RBM (transformation-to-
MTL layer weights), we simulated temporal inertia by modulating the MTL
neural activation function given by equation 3.1. In particular, we reduced
the Hebbian phase firing probability of a MTL neuron at a given navigation
step if it did not fire during the Hebbian phase at the previous navigation
step. That is, if pM

j (tHebb
i ) was the firing probability of the j th MTL neuron

during the Hebbian phase at time tHebb
i , then we reset the firing probability

of that neuron to

p′M
j

(
tHebb
i

) = c × pM
j

(
tHebb
i

)
, (3.4)

where c is a real-valued parameter slightly less than one, if and only if
the j th MTL neuron did not fire during the Hebbian phase at time tHebb

i−1 .
In all other cases, p′ was set equal to p. Exact values used for c are given
below. Since c always had a value of one or very close to one, the overall
weight update vector arising from any one navigation step was altered
little by the effects of inertia, and the statistical interpretation of the RBM
learning rules remained approximately valid, as evidenced by the drop in
reconstruction error as training proceeded (see section 4.2). In section 5,
we suggest two alternative mechanisms that could constitute physiological
bases for temporal inertia. Note that we have modeled temporal inertia
here as an inertia of inactivity by decreasing a neuron’s firing probability
if it did not fire at the previous step. The experimental evidence discussed
above is more consistent with an inertia of activity that would result from
an increased firing probability if the neuron did fire on the previous step. In
fact, we have simulated both types of inertia separately and in combination.
In all three cases, the results for our major measure of orientation invariance,
DM, were nearly identical. The advantage of modeling inertia as we have
done here is that it results in sparser MTL representations and place-cell-like
activity, at least in the case of the linear track (see below).
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Figure 7: Schematic of the linear track environment. Thick gray lines repre-
sent environmental boundaries. Each possible model location is represented
by a filled black circle, and each possible head direction at a given location is
represented by either a solid or dashed line segment. Rightward headings are
displayed as dashed lines and leftward headings as solid lines.

3.1.5 Environment and Navigation. The first environment on which we
trained our model is shown in Figure 7. This “linear track” environment
consisted of four walls enclosing a series of six locations. At each loca-
tion were four possible head directions, which could be divided into two
rightward headings (the two that have positive components in the right-
ward direction) and two leftward headings. Navigation was simulated in a
manner roughly analogous to the way a rat explores a novel environment,
alternatingly moving to a new location and making head turns. During
training, navigation consisted of the model traversing the environment
from the left-most position all the way to the right-most position and back
again by making alternating locomotion steps and head turns. Before any
given navigational step, if the model’s current head direction was right-
ward, then it would translate one step rightward and randomly move its
head to one of the two rightward directions, and then to the other rightward
direction. Leftward steps were defined similarly.

Binary egocentric inputs for each viewpoint were calculated for each
grid point on a radial grid covering the environment using the procedure
described above. Since this procedure leads to continuous neural firing
probabilities ranging from 0 to 1, any value greater than 0.2 was set to
unity, while the remaining values were set to zero. The angular resolution
of the egocentric grid was chosen to be π/10 radians, while the radial
resolution was chosen to be unity, with values ranging from 1 to 6, for
a total of 20 × 6 = 120 egocentric neurons. The number of neurons in the
transformation layer was chosen to be 4 (head directions) ×120 = 480, while
the number of MTL neurons was chosen to be 120. Inhibitory weights
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from the head direction system divided the transformation layer into four
competing pools of 120 neurons each, with each subset active for one unique
head direction only. These values were chosen because our previous work
(Byrne et al., 2007) demonstrates that a network with these interlayer size
ratios can perform egocentric-allocentric transformations accurately.

In the first training phase, the connection weights between the ego-
centric input layer and the transformation layer were trained so that the
model could reconstruct egocentric input from the resulting transforma-
tion layer representations. This training was performed using the standard
RBM learning rules with η = 0.05 and all initial weights set to zero. A
larger learning rate parameter was tested in preliminary simulations, but
a smaller value tended to lead to more stable final transformation layer
firing representations over repeated sampling, making it easier for the MTL
layer to learn representations of transformation layer activity. In the second
phase of training, the transformation-to-MTL weights were learned using
the same RBM procedure, with c set to 0.9 for the MTL neurons. Again,
the initial weights were set to zero. For this phase, η was set to the smaller
value of 0.001 because larger learning rates were found to generate MTL
representations with lower levels of orientation invariance.

3.2 Results and Discussion. Reconstruction error was defined as

√√√√ 1
Nv N

N∑
i=1

[E(xi ) − Ēr (xi )]2, (3.5)

where Nv is the number of egocentric neurons, N is the number of view-
points within the environment, and Ēr is the egocentric representation
reconstruction averaged over 500 samples. For the first phase of training, in
which reconstructions of data were generated using only the correspond-
ing transformation layer representations, reconstruction error is plotted
in the upper-left panel of Figure 8. Notice that the model learned to re-
construct egocentric inputs from their transformation layer representations
after about 2.5 × 105 navigation steps. However, training was continued for
an extended period to further reduce variance in the transformation layer
representations. The number of training steps used here might seem exces-
sive, but it should be noted that our model was trained de novo, whereas
a real neural system pretrained on a large ensemble of environments could
learn the mapping for a new environment much more quickly. We return
to this point in section 5.

In the second training phase, reconstruction error was calculated again
using equation 3.5, but in this case reconstruction relied on the entire cir-
cuit, with egocentric input feeding forward to the MTL layer via the trans-
formation layer and then back through the entire circuit to perform the
requisite reconstruction. Results averaged over five networks are plotted
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Figure 8: (Upper left) Reconstruction error as a function of training step for the
linear track environment during training of the egocentric-to-transformation
weights. (Upper right) Reconstruction error as a function of training step for the
linear track environment during training of the transformation-to-MTL weights.
(Lower left) A family of DM values for the linear track environment plotted
against training step, with each curve corresponding to the orientation invari-
ance measure for a given spatial separation. The upper curve is DM(1), and the
lower curve is DM(5), that is, the orientation dependence of MTL representa-
tions at spatial separations of 1 to 5. (Lower right) Orientation-invariance results
for the model trained with the RBM rules on the linear track environment. The
diamonds are DE (n). The squares represent the same calculation for MTL repre-
sentations (i.e., DM(n)), but with only rotations between leftward and rightward
directions considered. The lower curve with error bars alone represents DM(n),
but with only rotations between leftward and leftward directions or rightward
and rightward directions considered. Error bars represent standard errors of
the means calculated across five networks.

in the upper-right panel of Figure 8. The full model learned to reconstruct
the data reasonably well after 15 × 105 steps, but because of the effects of
the temporal inertia, it did not perform as well at reconstruction as the
simple egocentric layer–transformation layer circuit alone. As in the first
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Figure 9: Examples of two linear track model place cells. The solid line segments
indicate the viewpoints at which the given cell responds.

simulation, orientation invariance of MTL representations was measured
using equation 2.3. However, whereas the MTL activation vector for a given
location and orientation (i.e., M(xi )) was determined uniquely by the ego-
centric input via deterministic equations (neurons were rate-coded) in the
first simulation, here its mean value over 500 samples was used in the deter-
mination DM(n). Also, because the model switched only between leftward
and rightward directions at the end points of the track, DM(n) was calcu-
lated separately for head rotations between two same-direction traversals
(both rightward or both leftward) and head rotations between a leftward
and rightward direction. It should be noted that in the former case, DM(n)
drops rapidly during early training but then begins to fluctuate, followed
by further small drops after extended periods of time. This is illustrated
in the bottom left panel of Figure 8. Since convergence of this quantity
is therefore difficult to determine, we let training simulations run for ap-
proximately 50 × 105 steps, after which reconstruction error tended to have
reached a minimum and DM(n) had gone through its first major drop in
value. Values of DM(n) and DE (n) averaged over five networks are shown
in the bottom right panel of Figure 8. Clearly, MTL representations tend to-
ward orientation invariance if only rightward or leftward travel directions
are considered in isolation.

From the bottom right panel of Figure 8, we see that the network exhib-
ited orientation invariance within one direction of travel but not between
travel directions. This is consistent with the fact that place cells tend to
show directionality in their firing on the linear track (McNaughton, Barnes,
& O’Keefe, 1983). To examine this further, we analyzed the response prop-
erties of our model MTL neurons to see if they exhibited place-cell-like
behavior. First, a threshold was defined such that if a neuron fired at a
given viewpoint in more than 75% of 500 samples, then it was consid-
ered to respond at that viewpoint. Second, if that neuron responded in
a sufficiently localized way, defined here as firing at one location or two
neighboring locations, for both leftward or both rightward directions, but
at no additional viewpoints, then it was labeled as a directionally selective
place cell. Examples of such cells are shown in Figure 9. The results of
this analysis averaged over five networks indicate that 19 ± 4% (mean ±
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Standard error of the mean (S.E.M.) calculated over five networks) of MTL
neurons responded for at least one viewpoint on the track, while at any
given viewpoint, an average of 5.3 ± 0.5% of neurons responded. Of re-
sponding neurons, 45 ± 2% were directionally selective place cells. An anal-
ysis of the firing properties of transformation layer neurons revealed no
discernible patterns other than that the neurons were selective for head
direction, as built into the network’s construction.

Results for simulations in which an “inertia of activity” was employed
(not shown here) were nearly identical to the above results in terms of the
measure of orientation invariance, DM. However, MTL neurons in these
latter simulations tended to show firing opposite to those described above.
That is, instead of demonstrating spatially localized, orientation-invariant
firing fields, MTL neurons in these simulations showed firing in most loca-
tions, but with spatially localized, orientation-invariant fields of inactivity.

It should be noted that Battaglia, Sutherland, and McNaughton (2004)
have found that when objects are added to linear tracks, thus adding visual
complexity, place cell firing becomes direction independent, as in the open
field. The direction dependence of our linear track place fields arises because
when the model travels in leftward or rightward directions, it always looks
in directions that are predominantly leftward or rightward. We simulated
navigation this way because we assumed that an animal traveling along
such a track would focus its attention in a predominantly forward direction.
Adding complexity to the track might affect how it is explored or attended
to by the animal, perhaps even causing it to be treated more like a full
two-dimensional environment.

4 Simulation 3: RBM Method Applied to Small Square Environment

4.1 Methods. The second environment on which we trained our model
is shown in Figure 10. This “box” environment consisted of four walls
enclosing a collection of nine locations. In this environment, the model
could take on any one of four equally spaced head directions at each loca-
tion. During training, navigation consisted of the model taking alternating
translation and rotation steps to form a random trajectory through the en-
vironment. The model would move to a nearest-neighbor location within
π radians of its current head direction while maintaining this head direc-
tion, and then randomly make either a clockwise or counterclockwise turn
through one head direction increment (π/2 radians).

Binary egocentric inputs for each viewpoint were calculated at points on
a radial grid covering the environment as in the previous simulation. The
angular resolution of the egocentric grid was π/10 radians, while the radial
resolution was unity, with values ranging from 1 to 5 for a total of 20 × 5 =
100 egocentric neurons. The number of neurons in the transformation layer
was 400 (4 head directions ×100 egocentric inputs), while the number of
MTL neurons was 100. Inhibitory weights from the head direction system
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Figure 10: Schematic of the square environment. Thick gray lines represent
environmental boundaries. Each possible model location is represented by a
filled black circle, while each possible head direction at a given location is
represented by a solid line segment.

divided the transformation layer into four competing pools of 100 neurons
with one active for each head direction.

The remaining procedures and parameters were identical to those used
in simulation 2, except that c was set equal to 0.8 in order to generate
slightly stronger inertia, which was found to give slightly better results.
Training of the egocentric-to-transformation weights was performed for
6.5 × 105 steps, while training for the transformation-to-MTL weights was
performed for 20 × 105 steps.

4.2 Results and Discussion. Unlike the previous environments, the
maximum linear dimension of the box environment was rather short, so
DM(n) and DE (n) could be calculated only for n = 1, 2, and 3. These quanti-
ties are plotted in Figure 11, with DM(n) averaged over five independently
trained networks. Again DM(n) is small compared with one as well as with
DE (n), indicating the development of orientation invariance in MTL repre-
sentations. An analysis of MTL neuron responses indicated sparse coding,
with 25.2 ± 3.8% (mean ± SEM calculated over five networks) of neurons
responding at at least one viewpoint within the environment, but with only
4.3 ± 0.3% responding at any one viewpoint.

In the open field, a place cell fires selectively for some localized region
of the environment and shows little dependence on head direction (Muller
et al., 1994). While some of the MTL neurons in our trained models did
respond selectively for one or two neighboring locations only, and did so
for all head directions, the majority were difficult to classify. This may
simply have been because our square environment did not contain a large
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Figure 11: Orientation-invariance results for the model trained with the RBM
rules on the square environment. The diamonds are DE (n), while the circles are
DM(n) averaged over five networks (error bars are too small to plot here).

enough number of exploration locations to provide a good measure of
how “localized” a given neuron’s response area was. In addition to the
few observed place cell responses (approximately 20% of responding MTL
neurons), we also found that some model neurons tended to respond at
a fixed distance from one of the walls for the majority of head directions.
Such responses resembled those of boundary vector cells, a type of neuron
that has been suggested by O’Keefe and Burgess (1996) and Hartley et al.
(2000) to drive the firing of place cells. Together, cells that responded in a
way qualitatively similar to place cells or boundary vector cells made up
about half of responding MTL neurons.

As with the linear track simulations of the previous section, switching to
an inertia of activity in these simulations was found to have no appreciable
effect on the orientation-invariance measure, DM.

5 General Discussion

In this letter, we have argued that two principles are responsible for learning
orientation-invariant representations of environments: (1) the need to form
accurately retrievable, long-term memory representations of spatial layouts
and (2) a temporal inertia constraint within MTL memory structures. Our
initial approach was to train a neural network model to minimize a cost
function embodying these principles. Although this approach showed that
the principles are indeed consistent with the learning of orientation invari-
ant representations, it suffered from two shortcomings: the unbiological
nature of the learning rules and the existence of numerous local minima in
the cost function. These problems were overcome by the second approach,
using an RBM trained by correlational weight updates; such weight updates
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might be accomplished respectively by long-term potentiation and depres-
sion in the brain. The RBM also generated MTL representations that tended
to orientation invariance on the whole and also exhibited several character-
istics reminiscent of place cells found in the mammalian hippocampus, at
least for the linear track environment. Abstract environments with a higher
density of exploration points should be trained to clarify the response prop-
erties of model MTL neurons in an open-field setting.

There are several ways in which the simple form of temporal inertia
we have proposed might be accomplished by neural systems. For exam-
ple, gain modulation, which has been observed in posterior parietal cortex
(Snyder et al., 1998) and modeled with multiplicative synapses (Pouget
& Sejnowski, 1997), could allow self-connected neurons to modulate their
future sensitivity to afferent input. Alternatively, it could be the case that
during a Hebbian phase, transformation neurons alone cannot drive MTL
neurons to saturation. Instead, if a given MTL neuron fired at one nav-
igational step and continued receiving high levels of input at the next
step, then voltage-dependent N-methyl-D-aspartate receptors with slow
dynamics (Jahr & Stevens, 1990) might begin to contribute to the driving
postsynaptic currents, thus allowing saturation on the next step. Of course,
these two mechanisms are more consistent with an inertia of activity than
the inertia of inactivity that we have concentrated on here. However, as
we have described above, employing the former kind of inertia generates
model MTL neuron responses that consist of localized fields of orientation-
invariant inactivity. Such responses could be easily inverted through a layer
of inhibitory interneurons to give place-cell-like behavior.

Although the RBM overcame some of the shortcomings of the initial
model, it required an excessively large number of training iterations. How-
ever, the large number of steps might not be as unrealistic as it first seems.
For example, a small cluster of biological neurons, perhaps corresponding
to one neural unit in our model, could be expected to produce tens or hun-
dreds of spikes per second if highly excited. A quick calculation would
reveal that a few hours of active exploration each day for a number of days
or weeks could reasonably be expected to generate such a large number
of spikes. Thus, if an animal experienced multiple environments during
its early development, a set of weights that would generate place-cell-like
characteristics in both familiar and novel environments might be learned.
After this period, only fine-tuning would be required to encode novel spa-
tial layouts. Indeed, when rats are placed in novel enclosures, they show
somewhat distorted place cell firing immediately (O’Keefe & Burgess, 1996).
Slight refinement of connection strengths might be all that is required for
them to hone this representation and learn their novel surroundings (Barry
et al., 2006). In terms of future work, it would be beneficial if a number
of unique environments were constructed and the model trained on some
subset of them simultaneously. We predict that after such training, subse-
quent learning would be rapid, and orientation-invariant representations of
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the remaining environments would be learned quickly. This process would
require larger networks, more complex environments, and more training
time.

Recently, Rolls and Kesner (2006) have shown that place cell responses
can be generated easily by upstream grid cells. However, to our knowl-
edge, no models presented prior to the discovery of grid cells have relied
on units with such firing properties, nor have any such models demon-
strated the emergence of grid cell responses over the course of learning.
Similarly, although our model does give rise to place-cell-like responses
under certain circumstances, it cannot be considered a full model of the
system that transforms egocentric information into place cell behavior. This
leaves at least two possible interpretations for our model. First, grid cell
activity might not constitute the first level of orientation-invariant spatial
representation in the brain. In this case, our model MTL layer might be
related to some upstream driver of grid cell activity. The second possibility
is that medial temporal neurons in our model are displaying grid cell firing
patterns, but that the small size of the simulated environments does not
allow more than one vertex to be seen in the response of a given cell. This
would require an individual MTL neuron to receive strong input not only
when the model is presented with one particular egocentric view, but also
when the model is presented with a view that results from pure translation
to any other vertex location. Although an RBM tends to learn a unique
hidden state for each unique visible state, the possibility of an MTL neuron
being responsive to multiple, distinct views is not problematic so long as the
population state vector is unique at each location. However, the likelihood
of our model learning MTL representations with this level of structure still
seems low without the addition of further constraints. O’Keefe and Burgess
(2005) suggest one such constraint that could lead to the emergence of grid
cells: that a gridlike interference pattern is generated by the interaction be-
tween theta-frequency-modulated septal inputs to the hippocampus and
near-theta-frequency subthreshold oscillations in membrane potential in
entorhinal cells.

With weights in the transformation model set to completely random
values, we would expect rapid variation in egocentric input generally to
produce rapid variation in MTL firing. However, after training, MTL repre-
sentations were found to vary quite slowly during rotation. The temporal
inertia employed for the RBM simulations above has its largest slowing
effect on the firing of a given MTL neuron when the activity of that neu-
ron varies the fastest. Therefore, the network learns rotational invariance
in part by finding slowly varying representations of more quickly varying
input. This is similar in spirit to the neural model of Wiskott and Sejnowski
(2002), which learns such invariances by explicitly finding outputs that
vary as slowly as possible in time. As with many models of place cell learn-
ing, though, this model does not naturally learn the inverse transformation
needed to recreate the full input.
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As a final point, we offer a possible route to testing our ideas experi-
mentally. Simulation results for both the RBM trained in the square and
linear environments and for the model trained with the original cost func-
tion in the very simple linear environment indicate that DM, the measure of
orientation invariance in MTL representations, continued to decrease (in-
dicating increasing orientation invariance) well beyond the point at which
the model learned to accurately reconstruct egocentric representations. It
would therefore be of great interest if such an effect could be found in an-
imals, perhaps during early development. Martin and Berthoz (2002) have
shown that well-defined head direction cell activity develops in young rats
before place cell activity becomes stable, a requirement for our model, and
that this place cell stability is not well established until after 50 days of age.
In order to test our prediction, experiments that attempt to correlate directly
the development of place cell activity with behavioral performance must
be conducted.
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