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Remembering the Past and Imagining the Future: A Neural Model of
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The authors model the neural mechanisms underlying spatial cognition, integrating neuronal systems and
behavioral data, and address the relationships between long-term memory, short-term memory, and
imagery, and between egocentric and allocentric and visual and ideothetic representations. Long-term
spatial memory is modeled as attractor dynamics within medial-temporal allocentric representations, and
short-term memory is modeled as egocentric parietal representations driven by perception, retrieval, and
imagery and modulated by directed attention. Both encoding and retrieval/imagery require translation
between egocentric and allocentric representations, which are mediated by posterior parietal and
retrosplenial areas and the use of head direction representations in Papez’s circuit. Thus, the hippocampus
effectively indexes information by real or imagined location, whereas Papez’s circuit translates to
imagery or from perception according to the direction of view. Modulation of this translation by motor
efference allows spatial updating of representations, whereas prefrontal simulated motor efference allows
mental exploration. The alternating temporal—parietal flows of information are organized by the theta
rhythm. Simulations demonstrate the retrieval and updating of familiar spatial scenes, hemispatial neglect
in memory, and the effects on hippocampal place cell firing of lesioned head direction representations
and of conflicting visual and ideothetic inputs.
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One of the most intriguing challenges in cognitive neuroscience
is to understand how a higher cognitive function such as memory
arises from the action of neurons and synapses in our brains. Such
an understanding would serve to bridge between the neurophysi-
ological and behavioral levels of description via systems neuro-
science, allowing for the reinforcement of convergent information
and the resolution of questions at one level of description by
inferences drawn from another. Moreover, a theory that bridges the
cellular and behavioral levels can lead to the development of
experimental predictions from one level to another and improved
ability to relate behavioral symptoms to their underlying patholo-
gies. In terms of developing such an understanding of memory,
spatial memory provides a good starting point due to the ability to
use similar paradigms in humans and other animals.

We are often faced with the challenging task of deciding how to
act in the absence of complete sensory information, for example,
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when navigating toward an unseen goal. To solve such tasks, we
must rely on internal representations of object locations within
their environment. Here we attempt to develop a model of the uses
of these internal representations in spatial memory, incorporating
data from single-unit recording systems, neuroscience and behav-
ioral studies, and describing how each relates to the other. Central
questions in the cognitive neuroscience of spatial memory concern
the frames of reference used for representations of location, for
example whether they are egocentric (relative to parts of the body)
or allocentric (relative to the external environment), the durations
over which different representations are maintained, the uses they
are put to, and how they interact with each other. However, there
is currently no clear consensus, with various investigators stressing
one or the other type of representation (e.g., cf. Poucet, 1993;
Wang & Spelke, 2002). To address these questions, we propose a
general organizational structure for spatial memory (see also Bur-
gess, 2006; Mou & McNamara, 2002) encompassing encoding and
retrieval of spatial scenes as well as some aspects of spatial
navigation, imagery, and planning. We then implement the key
components of this structure in a neurophysiologically plausible
simulation, to provide a quantitative model relating behavior to the
actions of networks of neurons. We provide example simulations
of four key test situations, showing that the model can account for
aspects of representational neglect, as well as spatial updating and
mental exploration in familiar environments, and can place cell
firing patterns seen in rats with lesions to the head direction system
and in normal rats navigating through environments that unexpect-
edly change shape (Gothard, Skaggs, & McNaughton, 1996). First,
we briefly review some of the data at each of these levels of
description that motivate the design of the model.
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Neuronal Representations

Data from electrophysiological recordings in behaving animals
provide perhaps the most direct evidence of the nature of the
representations at work in spatial cognition. We start with the
apparently allocentric representations associated with the mamma-
lian medial temporal lobe. View-invariant hippocampal “place
cells” fire selectively for an animal’s location in space (e.g.,
O’Keefe, 1976), but show little dependence on the animal’s ori-
entation during random, open field foraging. We refer to this
representation as allocentric, representing location relative to the
environment, even though the location represented is that of the
animal itself. In a linear track, place cells tend to be direction
specific, however, when the track environment is enriched with
place-unique cues, the place cells are much less directionally
selective (Battaglia, Sutherland, & McNaughton, 2004). O’Keefe
and Nadel (1978) argued that this collection of place-selective
neurons forms the basis of a cognitive map and provides the rat’s
internal allocentric representation of location within the environ-
ment. Evidence for the existence of place cells has also been found
in the hippocampus in nonhuman primates (Matsumura et al.,
1999; Ono, Nakamura, Nishijo, & Eifuku, 1993) and in humans
(Ekstrom et al., 2003). The representation of the complementary
spatial information— orientation independent of location—has
also been found; “head direction cells” (see, e.g., Taube, 1998) are
found along an anatomical circuit largely homologous to Papez’s
circuit (Papez, 1937) leading from the mammillary bodies to the
presubiculum via the anterior thalamus. A representation related to
place cells has also been found in the parahippocampal and the
hippocampal region of both nonhuman (Rolls & O’Mara, 1995)
and human primates’ (Ekstrom et al., 2003) “view cells,” which
fire when an animal is looking at a given location from a range of
vantage points.

The location of a place cell’s response depends on large, ex-
tended local landmarks rather than on discrete objects, whereas the
orientation of the overall place and head direction representations
depend on landmarks at or beyond the reachable environment (see
Barry et al., 2006; Burgess & O’Keefe, 1996; Cressant, Muller, &
Poucet, 1997). Thus, the location and shape of the firing fields of
hippocampal place cells can be explained if it is assumed that their
firing is driven by the activity of a population of boundary vector
cells (BVCs; Hartley, Burgess, Lever, Cacucci, & O’Keefe, 2000;
O’Keefe & Burgess, 1996). These neurons, hypothesized to exist
within parahippocampal cortex, show maximal firing when an
animal is at a given distance and allocentric direction from an
environmental landmark or boundary. The direct or indirect recip-
rocal connectivity of the hippocampal formation and parahip-
pocampal regions with each other and with the perirhinal cortex
(for a review, see Burgess et al., 1999), an area that is known to be
important for object recognition (Davachi & Goldman-Rakic,
2001; Murray & Bussey, 1999; Norman & Eacott, 2004), probably
allows for the positions and identities of landmarks visible at a
particular location to be bound to that location.

In parallel to the above allocentric representations, egocentric
representations, which are ubiquitous throughout the sensory, mo-
tor, and parietal cortices, are clearly directly involved in all aspects
of spatial cognition. Sensory representations will be egocentric,
reflecting the reference frame of the receptor concerned (e.g.,
retinotopic in the case of visual input), whereas motor output will

reflect the reference frame appropriate for the part of the body to
be moved (see, e.g., Georgopoulos, 1988). Coordinating these
representations, the posterior parietal cortices are heavily involved
in sensorimotor mappings. The posterior parietal cortex is known
to contain neurons that respond to stimuli in multiple reference
frames, especially areas near or within the intraparietal sulcus. In
particular, Galletti, Battaglini, and Fattori (1995) have found neu-
rons in the anterior bank of the parietal—occipital sulcus (V6A) in
the ventromedial parietal cortex that represent the positions of
visual stimuli in a craniotopic reference frame. Also, area 7a
contains neurons that exhibit egocentrically tuned responses that
are modulated by variables such as eye position and body orien-
tation (Andersen, Essick, & Siegel, 1985; Snyder, Grieve,
Brotchie, & Andersen, 1998). Such coding can allow transforma-
tion of locations between reference frames (Pouget & Sejnowski,
1997; Zipser & Andersen, 1988). Furthermore, head direction
selective neurons that exhibit responses tuned to various different
reference frames have been found in the posterior cortices of the
rat (Chen, Lin, Barnes, & McNaughton, 1994). Such properties
might allow for the establishment of the angular relationship
between different representational frames.

A number of single-unit recording studies have shown that areas
of the primate posterior parietal cortex, again in and around the
intraparietal sulcus, contain neurons that exhibit firing patterns
modulated by various combinations of head position, velocity,
acceleration, and visual stimuli (Andersen, Shenoy, Snyder, Brad-
ley, & Crowell, 1999; Bremmer, Klam, Duhamel, Hamed, & Graf,
2002; Klam & Graf, 2003). The nature of these interactions ap-
pears to be complex, but Bremmer et al. (2002) suggested that this
idiothetic modulation of parietal neuron firing might be related to
object tracking during self-motion. This argument is indirectly
supported by Duhamel, Colby, and Goldberg (1992), who have
shown that eye movements that bring the location of a previously
flashed stimulus into the receptive field of a parietal neuron elicit
aresponse from that neuron, even though the stimulus is no longer
present (see also Colby, 1999). Area 7a is the part of the parietal
cortex most strongly connected with the medial temporal lobe,
including efferent projections into the parahippocampus, presub-
iculum, and CA1 (Ding, Van Hoesen, & Rockland, 2000; Rock-
land & Van Hoesen, 1999; Suzuki & Amaral, 1994) and afferent
connections from entorhinal cortex and CAl (Clower, West,
Lynch, & Strick, 2001). In addition, single-unit recordings from
monkey dorsolateral prefrontal and posterior parietal cortices sug-
gest that spatial working memory is, indeed, egocentric in nature
(Chafee & Goldman-Rakic, 1998; Funahashi, Bruce, & Goldman-
Rakic, 1989).

Finally, some hints of the temporal dynamics of neural process-
ing during navigation come from the observation that the theta
rhythm (i.e., 4-12 Hz) of the electroencephalogram invariably
accompanies voluntary displacement motion of the rat (O’Keefe &
Nadel, 1978). In addition, the phase of firing of place cells corre-
lates strongly with the rat’s location within the firing field
(O’Keefe & Reece, 1993) and independently of firing rate or
running speed (Huxter, Burgess, & O’Keefe, 2003). Recent results
indicate a possible role for theta in human navigation (Caplan et
al., 2003; Kahana, Sekuler, Caplan, Kirschen, & Madsen, 1999),
and several experiments indicate a role for theta phase (e.g.,
Pavlides, Greenstein, Grudman, & Winson, 1988) in modulating
hippocampal synaptic plasticity and theta power (Sederberg et al.,
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2003) or theta coherence between hippocampus and nearby neo-
cortical areas (Fell et al., 2003) in modulating encoding into
memory.

Lesions, Neuropsychology, and Functional Neuroimaging

The medial temporal lobes, and hippocampus in particular, have
long been known to be crucial for long-term memory (Eichenbaum
& Cohen, 1988; Scoville & Milner, 1957; Squire, 1986), together
with other elements of Papez’s circuit (Aggleton & Brown, 1999).
Within the spatial domain, neuropsychological studies have left
little doubt that the medial temporal lobe, particularly in the right
hemisphere, is critical for remembering the locations of several
objects within a visual scene over a significant delay (Crane &
Milner, 2005; Piggott & Milner, 1993; Smith & Milner, 1989).
Within a broader memory deficit, hippocampal damage seems to
specifically impair performance in tasks likely to require allocen-
tric representations of location or representations that can be
flexibly accessed from novel points of view rather than being
directly solved by use of egocentric representations. For example,
where locations must be remembered from a different point of
view to presentation, performance is impaired relative to location
memory from the same view even over short timescales (Abra-
hams, Pickering, Polkey, & Morris, 1997; Hartley et al., 2007;
Holdstock et al., 2000; King et al., 2002). More generally, accurate
spatial navigation to an unmarked goal location is impaired by
hippocampal damage in rats (e.g., Jarrard, 1993; Morris, Garrard,
Rawlins, & O’Keefe, 1982) and in humans (Bohbot et al., 1998;
Maguire, Burke, Phillips, & Staunton, 1996; Spiers et al., 2001).
Human neuroimaging studies also show involvement of the hip-
pocampus in accurate navigation (Hartley, Maguire, Spiers, &
Burgess 2003; laria et al., 2003; Maguire et al., 1998). Addition-
ally, neuroimaging of the perceptual processing of spatial scenes,
including plain walled environments, implicates the parahip-
pocampal cortex (Epstein & Kanwisher, 1998), a region associated
with landmark recognition (Aguirre & D’Esposito, 1999) and
navigation (Bohbot et al., 1998). See Burgess, Maguire, and
O’Keefe (2002) for a review.

Human neuropsychology has long recognized the parietal lobes
as playing a major role in spatial cognition. Parietal damage leads
to deficits in sensorimotor coordination such as optic ataxia, def-
icits in spatial manipulation such as mental rotation, and deficits in
spatial working memory (see, e.g., Burgess et al., 1999;
Haarmeier, Thier, Repnow, & Petersen, 1997; Karnath, Dick, &
Konczak, 1997). Visual processing in the temporal and parietal
lobes has been generally characterized respectively in terms of the
dorsal and ventral “what and where” (Ungerleider & Mishkin,
1982) or “what and how” (Goodale & Milner, 1992) processing
streams. The parietal region in the dorsal stream is concerned with
representing the locations of stimuli in the various egocentric
reference frames appropriate to sensory perception and motor
action and translating between these frames to enable sensorimotor
coordination. In contrast, the occipital and temporal visual regions
in the ventral stream are concerned with visual perceptual pro-
cesses related to object recognition, see neuronal representations
above.

Unilateral damage to the parietal cortex (most often on the right)
and surrounding areas commonly results in the syndrome of
hemispatial neglect: a reduced awareness of stimuli and sensations

on the contralateral side of space (perceptual neglect). Of partic-
ular interest here is the phenomenon of representational ne-
glect—a lack of awareness of the contralateral side of internal
representations derived from memory. In the classic demonstration
(Bisiach & Luzzatti, 1978), patients were asked to imagine the
Piazza del Duomo in Milan (with which they were very familiar)
and to describe the scene from two opposite points of view.
Buildings to the left of the given point of view (e.g., facing the
Cathedral) were neglected, but those same buildings were de-
scribed when given the opposite point of view (e.g., facing away
from the Cathedral), indicating intact long-term memory of the
entire Piazza, despite neglect of the left of each imagined scene.
Perceptual and representational neglect depend, at least in part, on
different neural systems and can be dissociated, even within the
same patient (Beschin, Basso, & Della Sala, 2000). It is interesting
that representational, but not perceptual, neglect is associated with
impaired navigation to an unmarked location (Guariglia, Piccardi,
laria, Nico, & Pizzamiglio, 2005). Consistent with these findings
of parietal involvement in imagery, neuroimaging experiments
have shown heightened activity within the precuneus (i.e., medial
parietal cortex) during mental imagery (e.g., Fletcher, Shallice,
Frith, Frackowiak, & Dolan, 1996) and visuospatial working mem-
ory (e.g., Wallentin, Roepstorff, Glover, & Burgess, 2006). Trans-
cranial magnetic stimulation and fMRI studies also indicate that
areas surrounding the right intraparietal sulcus, including areas 7a
and 40, are essential in the generation and manipulation of ego-
centric mental imagery (Formisano et al., 2002; Knauff, Kassubek,
Mulack, & Greenlee, 2000; Sack et al., 2002).

Behavioral and single-unit studies indicate that memory for
locations in general, and the place cell representation of location in
particular, is automatically updated by self-motion, a process more
generally known as path integration or spatial updating (see
below). This process may reflect an interaction between the pari-
etal and hippocampal systems, as the parietal cortex appears to be
centrally involved (Alyan & McNaughton, 1999; Commins, Gem-
mel, Anderson, Gigg, & O’Mara, 1999; Save, Guazzelli, & Poucet,
2001; Save & Moghaddam, 1996). For example, Save, Paz-
Villagran, Alexinsky, and Poucet (2005) have shown that lesions
to the associative parietal cortex of rats result in altered place cell
firing, suggesting that egocentric sensory information must travel
through the parietal cortex in order to elicit appropriate place cell
firing. This is consistent with a number of experiments that dem-
onstrate that mental exploration/navigation depends on the poste-
rior parietal and extrahippocampal medial temporal regions in
primates and on homologous regions in the rodent brain (Ghaem et
al., 1997; Pinto-Hamuy, Montero, & Torrealba, 2004). The inter-
action between the parietal and medial temporal areas likely in-
volves the retrosplenial cortex, lesions of which selectively disrupt
path integration (Cooper, Manka, & Mizumori, 2001), and the
parietal-occipital sulcus, which has been associated with topo-
graphical disorientation (Ino et al., 2002) and cells coding for
locations in space (Galletti et al., 1995).

Prefrontal regions, as well as parietal ones, are implicated in
spatial working memory, with parietal areas predominantly asso-
ciated with storage and prefrontal areas with the application of
control processes, such as active maintenance or planning (Shal-
lice, 1988; R. Levy & Goldman-Rakic 2000; Oliveri et al., 2001),
the use posterior spatial representations. Thus, fMRI studies have
shown activation in both of these areas when subjects were re-
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quired to remember the locations of various objects for short
periods of time (Galati et al., 2000; Sala, Rdmi, & Courtney,
2003). Manipulations of working memory may also involve mak-
ing or planning eye movements in order to direct attention to
spatial locations in imagery. In support of this notion, voluntary
eye movements disrupt spatial working memory (Postle, Idz-
ikowski, Della Sala, Logie, & Baddeley, 2006), whereas left-
hemispatial neglect patients show abnormal eye movements that
deviate about 30° rightward during visual search (Behrmann, Watt,
Black, & Barton, 1997) as well as while at rest (Fruhmann-Berger
& Karnath, 2006). Moreover, adapting prisms that shift the ne-
glected visual field toward the good side of space, which would
compensate for a rightward bias in gaze direction, ameliorate both
perceptual and representational neglect (Rode, Rosetti, & Boisson,
2001). Studies involving mental navigation and route planning
consistently find elevated activation in frontal regions, especially
on the left side (Ghaem et al., 1997; Ino et al., 2002; Maguire et al.,
1998). For example, Maguire et al. (1998) found additional acti-
vation in the left prefrontal cortex associated with the planning of
detours when subjects were navigating in a familiar virtual town in
which the most obvious route had suddenly been blocked. This
suggests that left prefrontal areas contribute to route planning,
perhaps guiding egocentric mental imagery within the temporal—
parietal systems activated by the basic navigation condition.

Cognitive Psychology

Given the electrophysiological and lesion evidence for parallel
egocentric and allocentric representations of location, we next
consider converging evidence from cognitive psychology in which
one, the other, or both may contribute to behavior. Simons and
Wang (1998; Wang & Simons, 1999) performed an elegant series
of experiments in which subjects were required to remember an
array of objects presented on a circular table. During the delay
period preceding the memory test, the table would either remain
stationary or rotate through a fixed angle. At the same time, the
subject would either remain stationary or walk through the same
angle around the table. Thus, the test stimuli could be aligned with
the studied view, with a rotated view consistent with the subject’s
motion, with both, or with neither. Subjects’ performance on a
memory task (detecting which object had moved) provided evi-
dence for the use of both (a) a visual-snapshot representation of the
presented array, and (b) an egocentric representation that is up-
dated to accommodate self-motion by showing an advantage
whenever the test array was aligned with either representation. The
latter spatial updating ability (Rieser, 1989) can be thought of as
a generalization of path integration, allowing an organism to keep
track of several locations, including its origin of motion during real
or imagined navigation in the absence of visual cues. The results
suggest that both of types of representation exist in the brain. It is
interesting to note that evidence suggests that allocentric represen-
tations of object locations (i.e., relative to visual landmarks exter-
nal to the array) are also used in this type of experiment, as shown
by a subsequent study incorporating a rotatable landmark (Bur-
gess, Spiers, & Paleologou, 2004). Parallel influences of egocen-
tric and allocentric representations are also indicated by human
search patterns within deformable virtual reality environments
(Hartley, Trinkler, & Burgess, 2004). In these experiments, the
locus of search can be predicted by a model based on the firing of

hippocampal place cells, indicating allocentric processing of loca-
tion. However, subjects also tended to adopt the same orientation
at retrieval as at encoding, indicating egocentric processing of
orientation.

Further evidence for the use of both egocentric and allocentric
representations of space can be found in reaction time data from a
number of experiments involving the recognition/recall of previ-
ously presented object configurations from novel viewpoints. Di-
wadkar and McNamara (1997) had subjects learn the locations of
objects on a desktop from a number of viewpoints before taking
part in a recognition test. When presented with a novel view of the
same or a different object configuration, subjects’ reaction time
was found to vary linearly with the angular distance between the
observed view and the closest trained view. Related results were
found when blindfolded subjects had to point to where a given
object would be from a specific imagined viewpoint: Accuracy
and/or reaction time reflected the distance and angle between the
studied viewpoint and the imagined viewpoint (Easton & Sholl,
1995; Rieser, 1989; Shelton & McNamara, 2001). These results
are consistent with spatial updating of an egocentric representa-
tion. However, the additional use of allocentric representations in
these tasks is indicated by improved performance for viewpoints
aligned with the walls of the room or the sequence of learning
(Mou & McNamara, 2002), with external landmarks (McNamara,
Rump, & Werner, 2003), and with the absence of a relationship to
distance or angle for objects configured into a regularly structured
array (Easton & Sholl, 1995; Rieser, 1989). In possibly related
findings, Wang and Spelke (2000) suggested that the high variance
of the error in pointing to different objects after blindfolded
disorientation indicates independent egocentric representations for
the location of each object. In the same experiment, the lower
variance in errors when pointing to features of the testing room
indicated a single coherent (allocentric) representation for the
layout of the room. Similarly, judgments of relative direction
between objects from an imagined location at a third object do not
increase in variance with disorientation, indicating use of a more
coherent representation in this task than that used for egocentric
pointing (Waller & Hodgson, 2006). See Burgess (2006) for fur-
ther discussion.

Theoretical Analyses

It has been proposed (e.g., Milner, Paulignan, Dijkerman,
Michel, & Jeannerod, 1999) that the relative contribution of ego-
centric and allocentric representations to spatial memory depends
on the timescale of the task concerned. Short-term retention of
perceptual information for the purpose of immediate action will be
best served by egocentric representations appropriate to the corre-
sponding sensory and motor systems. By contrast, long-term mem-
ory for locations will be best served by allocentric representations
(i.e., relative to stable landmarks) because the location and con-
figuration of the body at retrieval typically will be unrelated to that
at encoding (see Burgess, Becker, King, & O’Keefe, 2001, for
further discussion). This observation is consistent with the evi-
dence for the role of the parietal and prefrontal areas in supporting
egocentric representations and short-term memory and the role of
medial temporal lobe areas in supporting allocentric representa-
tions and long-term memory, reviewed above.
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For intermediate timescales (e.g., tens of seconds), it may be
possible to relate the configuration of the body at retrieval to that
at encoding via the egocentric process of path integration or spatial
updating referred to above. Pierrot-Deseilligny, Miiri, Rivaud-
Pechous, Gaymard, and Ploner (2002) reviewed evidence suggest-
ing that spatial memory may have at least three important time-
scales. For the first approximately 20 s, they claim that a frontal—
parietal spatial working memory system is the dominant
mechanism, followed for approximately 5 min by a medium-term,
parahippocampally dependent memory system, and finally by a
hippocampally dependent long-term memory system that operates
only after delays of several minutes. Spatial scale might also be a
factor in determining which representations are used. For example,
in mammals, path integration becomes unreliable over long or
convoluted paths (see, e.g., Etienne, Maurer, & Seguinot, 1996),
whereas egocentric parietal and premotor representations may be
preferentially recruited for representations of locations in “peri-
personal” space that can be directly acted upon (e.g., Duhamel,
Colby, & Goldberg, 1998; Goodale & Milner, 1992; Graziano &
Gross, 1993; Ladavas, di Pellegrino, Farne, & Zeloni, 1998).

Along the above lines, Mou, McNamara, Valiquette, and Rump
(2004) proposed a transient egocentric representation of object
locations for immediate action and an allocentric representation of
the environment, including the subject’s own location, for actions
supported by information from long-term memory. On the basis of
the experiments probing memory for object location as a function
of differences between the studied, imagined, and actual views,
they argued that two types of spatial updating occur: spatial
updating of egocentric representations of object locations, and
spatial updating of the subject’s own location in the environmental
representation. A related proposal suggested transient egocentric
representations of single objects in parallel with a more coherent
enduring representation (Waller & Hodgson, 2006). (For a discus-
sion of the neural mechanisms supporting the integration of self-
motion and sensory information, see Guazzelli, Bota, & Arbib,
2001; Redish, 1999.)

In summary, evidence from psychology and neuroscience indi-
cates that spatial cognition involves multiple parallel frames of
reference, with short-term/small-scale tasks more likely to recruit
egocentric representations and long-term/large-scale tasks more
likely to recruit additional allocentric representations. However,
this proposed division of labor involving different reference
frames is neither absolute nor uncontroversial. Thus, Wang and
Brockmole (2003) have also argued that even long-term spatial
memory is purely egocentric. They found the current view to
influence the ability of students to point to an occluded but very
familiar landmark on the campus. Conversely, even short-term
memory can be shown to depend on the hippocampus when the
viewpoint is changed between study and test (King et al., 2002,
2004; Hartley et al., 2007) and on allocentric representations when
landmarks are parametrically manipulated (Burgess et al., 2004);
see Burgess (2006) for further discussion.

The Model: Overview

From the forgoing discussion, it appears that mammalian spatial
memory can make use of both egocentric and allocentric repre-
sentations in parallel, depending on the nature of the task. We now
propose a model of spatial cognition that accounts for the interac-

tion between long- and short-term memory processes in encoding,
retrieval, imagery, and planning. The model addresses data at
multiple levels of analysis, from single-unit recordings to large-
scale brain systems to behavior, and the relative roles played by
egocentric and allocentric representations and by visual and idio-
thetic inputs. We first provide a brief overview of the functional
architecture of our model, with further details of its implementa-
tion given in the next section and fully elaborated in the Appendix.

In our model, long-term spatial memory formation involves the
generation of allocentric representations in the hippocampus and
surrounding medial temporal lobe structures (perirhinal and para-
hippocampal cortices). The hippocampal place cell representation
is driven by convergent inputs from the dorsal and ventral visual
pathways. The ventral stream input consists of object features in
the perirhinal cortex, whereas the dorsal stream input consists of
BVCs in the parahippocampal cortex. These medial temporal lobe
areas are all mutually interconnected to permit pattern completion.
When cued with a partial representation of a place, such as a
specific landmark, the model thereby automatically retrieves the
full representation of that place, comprising the location of the
observer as well as the surrounding landmarks and their visual
appearance.

Both short-term spatial memory and imagery are modeled as
egocentric representations of locations in the precuneus, which can
be driven by perception or by reconstruction from long-term
memory (see below). The neural activations within this medial
parietal representation can be modulated by directed attention, to
capture the fact that one can attend sequentially to the spatial
locations of items in imagery just as in perception, presumably via
planned eye movements (see Postle et al., 2006). Both encoding
and retrieval require translation between the egocentric precuneus
and allocentric parahippocampal representations of landmarks.
This occurs via a coordinate transformation mediated by the pos-
terior parietal and retrosplenial cortices, reflecting the current head
direction.

Retrieval from long-term memory, cued by knowledge of posi-
tion and orientation relative to one or more landmarks, corresponds
to pattern completion of the parahippocampal representation of the
allocentric locations of landmarks around the subjects via its
connections with the hippocampal and perirhinal representations.
Thus, the medial temporal lobe acts as an attractor network within
which a representation of the visual features, distances, and allo-
centric directions of landmarks can be retrieved, which is consis-
tent with perception from a single location (represented in the
hippocampus). This representation is translated into the egocentric
precuneus representation, within which directed attention can
boost the activation of egocentrically defined locations of interest.
Finally, the additional activation can feed back to the parahip-
pocampal representation, again via posterior parietal translation,
and thence to the perirhinal representation so as to activate the
visual features of the attended landmark.

Motor efference drives the spatial updating of the egocentric
representation of the locations of landmarks. Specifically, modu-
lation of the posterior parietal egocentric—allocentric transforma-
tion by motor efference causes allocentric locations to be mapped
to the egocentric locations pertaining after the current segment of
movement. The reactivation of the BVCs by this shifted egocentric
representation then updates the medial temporal representation to
be consistent with the parietal representation. The bottom up
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(parietal to temporal) and fop down (temporal to parietal) flows of
information are temporally organized into different phases of the
theta rhythm. Additionally, the generation of mock motor effer-
ence in the prefrontal cortex allows mental exploration in imagery
via mock spatial updating.

A central component of our model is circuitry that transforms
between different representations of the space surrounding an
animal. This proposed egocentric—allocentric transformation sug-
gests a solution to two puzzles regarding the functional anatomy of
memory and navigation. The first is the observation that Papez’s
circuit (including the mammillary bodies, anterior thalamus, ret-
rosplenial cortex and fornix, as well as the hippocampus) is both
crucial for episodic recollection, which is impaired by lesions
anywhere along it (see, e.g., Aggleton & Brown, 1999), and
provides the neural basis for head direction cells (Taube, 1998). A
second, related puzzle is the ubiquitous involvement of retrosple-
nial cortex and the anterior parietal—occipital sulcus in both nav-
igation (reviewed in Maguire, 2001) and memory (see, e.g., Bur-
gess, Maguire, Spiers, & O’Keefe, 2001). We propose (see also
Burgess, Becker, et al., 2001; Burgess, Maguire, et al., 2001) that
the segment of Papez’s circuit from the mammillary bodies to the
hippocampal formation via the anterior thalamus carries the head
direction information needed to transform the allocentric direc-
tional tuning of the BVC representation into an egocentric (head-
centered) representation suitable for mental imagery and that the
retrosplenial cortex/parietal-occipital sulcus may mediate or
buffer the stages of transformation between egocentric and allo-
centric representation (see also Ino et al., 2002). A related proposal
is that the retrosplenial cortex serves to integrate mnemonic and
path-integrative information (Cooper & Mizumori, 2001), which
maps onto our own proposal given the assumption of allocentric
long-term memory and egocentric spatial updating.

The Model: Architecture and Dynamics

In this section, we discuss the architecture of our model and then
describe the model dynamics and how spatial updating, mental
exploration, and learning are simulated. A simplified version of
our model with preliminary simulation results was described by
Becker and Burgess (2001). By lesioning the parietal region of the
model, the authors were able to simulate aspects of hemispatial
neglect. The model presented here builds on this earlier work by
deriving, in a more principled manner, the neural circuits for
allocentric representation and allocentric—egocentric transforma-
tions, and augments this work with parietal neural circuitry to
support spatial updating and mental navigation. The architecture of
our model rests upon three key assumptions:

1. The parietal window hypothesis: An egocentric window pro-
vides exclusive access into long-term spatial memory in the ser-
vice of mental imagery, planning, and navigation.

2. Allocentric coding in the medial temporal lobe: Allocentric
BVC representations are constructed in the parahippocampal re-
gion and project to hippocampal place cells where long-term
spatial memories are stored.

3. Transformation circuit: Access by the parietal window into
allocentrically stored spatial representations is mediated by a trans-
formation circuit; the same circuit also operates in the inverse
direction, such that the products of recall are mapped from allo-
centric into egocentric representations of space.

The Parietal Window Hypothesis

We hypothesized that a population of neurons maintains a
head-centered, egocentric map of space that can be driven either by
bottom-up sensory input or by top-down inputs from long-term
memory. This map represents the locations of all landmarks/
objects that are visible from an animal’s current location in space
or from a location that the animal recalls from previous experience.
This neuronal population, assumed to exist within the posterior
parietal cortex and very likely within the precuneus, will hence-
forth be referred to as the parietal window. We claim that the
contents of the parietal window are generated on the basis of some
combination of information from the senses (e.g., dorsal visual
stream) and from allocentric long-term spatial memory, with the
exact combination depending on the demands of the current task.
Manipulation of spatial information for the purposes of planning or
navigation, including spatial updating, occurs within the parietal
window.

The network model also includes circuitry that can manipulate
the contents of the parietal window so as to allow for spatial
updating or mental exploration. In the case of spatial updating, this
circuitry is activated by idiothetic information (proprioceptive cues
signaling the observer’s change in direction and location), whereas
in the case of mental exploration, it is activated by some mentally
generated equivalent (e.g., imagined rotation and translation dur-
ing path planning). The former ability allows the model to main-
tain an internal representation of its surroundings even with de-
graded or absent sensory input, whereas the latter provides a means
of recalling the locations of occluded landmarks and generating
navigational strategies for reaching them.

Allocentric Representations in the Medial Temporal Lobe

In contrast to the parietal window’s egocentric frame of refer-
ence, we postulate that an allocentric frame of reference is used in
the medial temporal lobe. The model’s egocentric reference frame
has its origin bound to the observer’s location, with its y-axis fixed
along the observer’s heading direction. The model’s allocentric
reference frame has its origin bound to the observer’s location (in
this sense, like place cell firing, it is not fully allocentric), but its
orientation is fixed relative to the external environment. Therefore,
both reference frames are similar in that they remain fixed with re-
spect to the observer so long as the observer undergoes transla-
tional motion only. However, when the observer’s head rotates
within the environment, the egocentric frame rotates with it,
but the allocentric frame remains stationary with respect to the
environment. An example of an object in the allocentric frame and
its corresponding location in the egocentric frame is shown in
Figure 1.

Consider the situation depicted in Figure 2 in which an observer
surrounded by six walls is located at the position marked “X,” with
a heading direction indicated by the arrow. If the walls of this
“two-room” environment are discretized uniformly into a set of
“landmark segments” (to simplify later calculations), then the
egocentric frame positions of the segments viewable from “X” can
be inferred readily. These positions are depicted by open circles in
the top panel of Figure 3. Representation of this egocentric infor-
mation by the parietal window neurons is accomplished by first
forming a one-to-one correspondence between the set of neurons
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Figure 1. Top: Egocentric reference frame in which the observer is
always at the origin, facing along the positive y-axis. A triangular landmark
sits in front and to the right of the observer in this frame. Bottom: The same
situation as above, but depicted in the allocentrically aligned reference
frame. In this frame, the observer is always at the origin, but the direction
of the y-axis is fixed to the external environment instead of the observer’s
heading direction. With the heading direction depicted (approximately 45°
away from the positive y-axis in the counterclockwise direction), the
triangular landmark lies directly on the positive y-axis and is rotated 45° in
the counterclockwise direction.

and a polar grid covering the egocentric reference frame. This grid
is depicted by the closed circles in the top panel of Figure 3. Each
neuron in the grid is tuned to respond most strongly to an object or
landmark at a particular direction and distance relative to the
organism’s head, which is at the origin of the grid. The neuron’s

response falls off exponentially for objects located further away
from the neuron’s preferred distance and direction (see the Ap-
pendix for details). When multiple segments are present within a
neuron’s receptive field, they contribute additively to its firing
rate, up to a maximum firing rate of 1. The parietal window
representation of the information depicted in the top panel of
Figure 3 is shown in the bottom panel of the same figure, where the
firing rate of each neuron is plotted at the location of its corre-
sponding grid point.

We assume that the observer in Figure 2 aligns its allocentric
frame such that the y-axis is perpendicular to the wall labeled / and
the x-axis is parallel to the same wall. The locations of the
landmark segments in this frame, which will not depend on the
observer’s heading direction, are depicted in the top panel of
Figure 4. By forming a one-to-one correspondence between a set
of neurons and a polar grid centered at the origin of the allocentric
reference frame, it becomes possible to represent the configuration
of landmark segments by the firing rates of this neural population.
In analogy with the egocentric parietal window neurons, each
allocentric neuron in the grid is tuned to respond most strongly to
an object or landmark at a particular distance from the organism’s
head, which is fixed to the origin of the grid and allocentric
direction (relative to the fixed environment). Again, the neuron’s
response falls off exponentially for objects located farther away
from the neuron’s preferred distance and direction. Note that these
allocentrically tuned neurons are essentially the same as the BVCs
described in the introduction and are referred to as such from this
point on. The BVC representation of the information depicted in
the top panel of Figure 4 is shown in the bottom panel of the same
figure, where the firing rate of each neuron is plotted at the
location of its corresponding grid point. Although we assume that
these BVCs exist within the parahippocampal cortex, we note that
cells with BVC-like responses have been found in the subiculum
(Barry et al., 2006; Sharp, 1999), an alternative location to the
parahippocampal cortex but one that is less consistent with neu-
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Figure 2. Map of the “two-room” environment used in the second set of
simulations. Solid rectangles represent environmental boundaries/
landmarks. Each grid point corresponds to a maximal firing location for

one hippocampal place cell. The “X” represents the model’s current loca-
tion and the arrow its heading direction.
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Figure 3. Top: Egocentric reference frame. Each grid point corresponds
to the preferred boundary/landmark location of a parietal window neuron,
which fires maximally when a landmark segment is located at that grid
point’s coordinates. The landmark segments for the discretized “two-room”
environment, as viewed from the model’s current location, are also shown.
The landmark segment at egocentric direction, 6, is indicated by the
dashed arrow. Finally, the model’s heading direction, which is always the
same in egocentric space, is indicated by the solid arrow. Bottom: Acti-
vation of parietal window neurons corresponding to the landmark segment
configuration. The firing rate of each neuron is plotted at that neuron’s
corresponding grid point, with lighter shades indicating higher firing rate.

roimaging results in humans showing parahippocampal processing
of spatial scenes including plain walled environments (Epstein &
Kanwisher, 1998).

To form long-term memories for specific spatial locations, spa-
tial input from BVCs and visual input from the perirhinal layer are
combined into a place cell representation. Although, in reality the
hippocampal formation consists of multiple spatially selective
regions (dentate gyrus, CA3, CAl), for simplicity, our model
hippocampus contains a single layer of recurrently connected place

cells. Their place preferences are arranged uniformly over a Car-
tesian grid that covers the relevant allocentric space for a given
environment (see Figure 2). In particular, a one-to-one correspon-
dence is formed between each of the model place cells and the set
of grid points so that a given place cell fires maximally when the
model is located at that cell’s corresponding grid point. These
model hippocampal neurons are reciprocally connected to the layer
of BVCs and to a layer of perirhinal identity neurons, thus allow-
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Figure 4. Top: Allocentric reference frame. Each grid point corresponds
to the preferred boundary/landmark location of a BVC, which fires max-
imally when a landmark segment is located at that grid point’s coordinates.
The landmark segments for the discretized “two-room” environment, as
viewed from the model’s current location, are also shown. The dashed
vector points to the landmark segment at egocentric direction. In this map,
it is located at the same distance from the model, but its direction, 6%, is
equal to 6° plus the model’s current heading direction. Finally, the model’s
heading direction within the allocentric reference frame is indicated by the
solid arrow. Bottom: Activation of BVCs corresponding to the landmark
segment configuration. The firing rate of each neuron is plotted at that
neuron’s corresponding grid point, with lighter color indicating higher
firing rate.
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ing environmental geometry and landmark identities to be bound
simultaneously to a given “place.” In addition, the layer of BVCs
is reciprocally connected to the layer of perirhinal neurons, thereby
allowing the association of landmark identities with allocentric
locations (see Figure 5 for a schematic of the full model). The full
reciprocal connectivity between the three medial temporal lobe
components of the model allows for the recall of a landmark’s
identity when attention is directed toward the parietal window
representation of that landmark’s location. This process of recall is
described in the next section.

Within our gross simplification of hippocampal circuitry, the
model’s single layer of place cells is most consistent with area
CA3, an area that is heavily recurrently connected, and that ex-
hibits place-selective firing. In our model, this recurrent connec-
tivity allows for recall/pattern completion, as it is often argued to
do in CA3 (Brun et al., 2002; Nakazawa et al., 2002). Another
gross simplification in our model is the strictly spatial function of
the hippocampus. Although the hippocampus is known to be
important in spatial memory, its more general contribution to
episodic memory is well established (for a review, see Burgess,
Maguire, & O’Keefe 2002).

Top—Down «

BYRNE, BECKER, AND BURGESS

Transformation Circuit

The assumption in our model of egocentric access to allocen-
trically stored spatial information has an important implication:
There must be circuitry that transforms between these representa-
tions. In order to be able to recall the locations and identities of
environmental boundaries relative to one’s own location and ori-
entation, long-term allocentric internal representations of space
must be transformed into egocentric representations. Conversely,
in order for sensory input to cue such recall, or for it to enter
long-term allocentric storage in the first place, the inverse trans-
formation from egocentric to allocentric representation must be
performed. That is, a visual stimulus at a retinocentrically encoded
location must be transformed into an allocentrically encoded lo-
cation in order to match against or store within spatial long-term
memory. We assume that sensory information is first transformed
into the head-centered egocentric parietal window reference frame
and then to the allocentric BVC representation. The transformation
from the parietal window representation to the BVC representa-
tion, and its inverse, can be accomplished very simply if absolute
heading direction is known. Consider, for example, that you are
facing west (90° in allocentric angular coordinates, where north is
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Figure 5. Schematic of the model. Each box or oval represents a set of neurons in a different brain region. Thin,
solid arrows represent full bottom-up interconnectivity between the neurons in the connected regions, whereas the
dashed arrows represent full top-down interconnectivity. Thick, solid arrows represent full connectivity, which is
unaffected by the bottom-up/top-down cycling. The thick dashed line from the inhibitory interneuron population (I)
represents inhibition that is unaffected by the bottom-up/top-down phases. A given perirhinal (PR) neuron fires
maximally when the model attends to a landmark segment with a particular identity. Hippocampal neurons are
associated with a Cartesian grid covering allocentric space such that a given neuron fires maximally when the model
is localized at its corresponding grid point. Boundary vector cells (BVCs) or parietal window (PW) neurons are
associated with a polar grid covering allocentric/egocentric space. A given BVC/PW neuron fires maximally when a
landmark segment is a certain distance and allocentric/egocentric direction away from the model. A given head
direction (HD) neuron fires maximally for a given head direction. The transformation layer neurons are responsible
for transforming allocentric BVC representations of space into egocentric PW representations. A second set of
top-down weights (curved, dashed arrow) from the transformation layer to PW are gated by egocentric velocity signals
to allow for spatial updating/mental exploration. Retrospl. = retrosplenial transformation layer.
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0°), and there is an object to your left (90° in egocentric angular
coordinates, where straight ahead is 0°); the object’s allocentric
direction can be calculated simply by adding the heading direction
to the object’s egocentric direction to obtain 180°—similarly, if
the object is known to be located to the south (an allocentric angle
of 180°) then its egocentric direction can be calculated by sub-
tracting the heading direction from the object’s allocentric direc-
tion. Thus, in our model the egocentric—allocentric transformations
are mediated by input from head direction cells that provide the
necessary modulation of firing rates by head direction (Snyder et
al., 1998), and the same neural circuitry can then perform the
transformation in either direction. The computation is a bit more
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complicated than a simple subtraction or addition of angles be-
cause angular directions are encoded across populations of nar-
rowly direction-tuned neurons; nonetheless, it can be accom-
plished in a single layer of neurons whose activities are nonlinearly
modulated by head direction (cf. Pouget & Sejnowski, 1997). See
Figure 6 for a schematic of the full transformation circuit.

When an animal first enters a new environment, we assume that
salient perceptual features reliably orient the head direction sys-
tem. We model the head direction system as a set of neurons
configured in a ring via lateral connections to behave as a one-
dimensional continuous attractor, as in previous models (e.g.,
Skaggs, Knierim, Kudrimoti, & McNaughton, 1995; Stringer,
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Figure 6. Top: Transformation circuit in bottom-up mode. A representation of the egocentric positions of all
viewable landmark segments is shown in the parietal window (PW). Rotated representations are projected onto
the various transformation sublayers, which are inhibited by current head direction (HD) activity via a population
of inhibitory interneurons (I). One transformation sublayer receives direct excitation from the HD system, thus
allowing its representation to project forward to the boundary vector cells (BVCs). Bottom: Transformation
circuit in top-down mode. The allocentric BVC representation of the environment is projected identically onto
each of the transformation sublayers. Each of these identical representations would be rotated through different
angles by the transformation to PW weights, but excitation and inhibition from the head direction system allows
only the correct sublayer to maintain sufficient activity to drive PW neurons.
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Trappenberg, Rolls, & de Araujo, 2002; Zhang, 1996). The con-
tinuous attractor property implies that the network will stabilize on
a single bump of activity corresponding to a single head direction,
and this bump can move continuously through 360° to reflect
self-motion or perceptual inputs. Moreover, the reliability of the
input mapping implies that if the animal returns to the same
environment in the future, the head direction system will be
oriented in exactly the same fashion and will exhibit the same
firing pattern as it did on the first exposure to the environment.

The egocentric-to-allocentric transformation is accomplished by a
circuit that combines head direction information with egocentric spa-
tial input from the parietal window. The transformation circuit, as-
sumed to be in the retrosplenial cortex/intraparietal sulcus, is com-
prised of a set of N identical neural subpopulations, each tuned to a
specific head direction. Each subpopulation encodes a rotated ego-
centric map consistent with the direction of its preferred heading.
Thus, connections between the parietal window and any one of the
transformation subpopulations are weighted such that a rotated ver-
sion of the egocentric spatial information contained in the parietal
window is projected onto that transformation sublayer. In our model,
there are 20 such sublayers corresponding to evenly spaced allocentric
directions. Each transformation sublayer then projects an identical
copy of its activation pattern onto the layer of BVCs. By setting
connections from the layer of head direction cells to the transforma-
tion neurons such that only the sublayer corresponding to the current
head direction is active, the transformation from egocentric to allo-
centric coordinates is accomplished. See Figures 5 and 6. In this way,
when the animal’s head rotates within the environment, head direction
cell activity and parietal window activity vary in time, but so long as
the animal undergoes no translation, activity projected to BVC neu-
rons remains constant. The gating function of the head direction cells
is accomplished via a combination of direct excitation from the head
direction cells to the appropriate transformation sublayer and indirect
uniform inhibition of all transformation layers by a population of
inhibitory interneurons driven by head direction cell activity. This
circuitry allows a localized bump of activity in the head direction
layer to select the set of transformation units corresponding to that
head direction.

The egocentric—allocentric transformation results in a single
viewpoint-independent representation of each location in an envi-
ronment. The allocentric representation consists of a distributed
pattern of activation across the boundary vector cell layer. To
encode this pattern as a distinct place memory, and to permit
subsequent cued recall, this pattern can be learned by an autoas-
sociative memory system. A retrieval cue, such as incomplete
egocentric sensory or mentally generated spatial information, can
then feed forward through the transformation circuit and reactivate
the correct allocentric representation of the model’s real or imag-
ined surroundings. Conversely, the place memory can generate a
viewpoint-specific mental image if we assume that the connections
in the transformation circuit operate with equal weights in both
directions. The recalled allocentric representation can thereby be
converted back into egocentric mental imagery of the environment
via the same neural circuitry.

Model Dynamics

Neurons in our model are rate coded (i.e., their activations
represent average neural firing rates rather than individual spikes)

and exhibit a continuous dynamic governed by “leaky-integrator”
equations. The complete mathematical details of the model, along
with these dynamical equations, can be found in the Appendix.
Here we present a more intuitive description of the model’s overall
behavior. For now, the issue of biologically realistic learning is
ignored and it is assumed that the model has already learned about
the spatial environments it encounters. The actual ad hoc training
procedure used to set the model weights for this work will also be
described briefly in a subsequent section, with full details pre-
sented in the Appendix. In a subsequent section, we also discuss
general principles that might underlie the learning of egocentric—
allocentric transformations in biological systems.

At the highest level of dynamics, our model operates in alter-
nating bottom-up and top-down stages, each lasting for 15 arbi-
trary time units. This periodic alternation in dynamics is based on
modeling work by Hasselmo, Bodelén, and Wyble (2002), who
argued that the hippocampal theta rhythm regulates the communi-
cation of this structure with interconnected brain regions. In par-
ticular they argued that during troughs in the rhythm, the hip-
pocampus primarily receives input from surrounding structures but
that during peaks, it primarily transmits information to these struc-
tures. We implement this alternating dynamics in our model both
because of the evidence supporting its existence and because it
allows the model to account for more experimental data than it
otherwise could. In particular, without these distinct phases the
model would have to engage in both bottom-up and top-down
processing at the same time. We have found that a functional
version of such a model exhibits states that strongly resist change
in response to external inputs.

During the top-down phase, activity from the hippocampal layer
feeds back to perirhinal cortex and also to the parietal window via
the BVC and transformation layers. In addition, during this phase,
the parietal window receives input from the senses, which we
assume can be down regulated if the model is performing mental
exploration or recall of a familiar environment without actually
changing its vantage point (see Figures 5 and 6). During the
bottom-up phase, the activity of the window is “frozen” to the last
pattern present during the top-down phase. This activity pattern,
which is the model’s current representation of the geometry of
egocentric space, is hypothetically maintained by a frontal—parietal
short-term memory system (which we do not model here), consis-
tent with evidence presented earlier. The frozen information from
the parietal window feeds forward during the bottom-up phase to
the hippocampal layer along with information from perirhinal
cortex, thus influencing the current hippocampal attractor state. In
principle, rigid freezing of the parietal window representation
during the bottom-up phase is not necessary, but such an approach
eliminates the need for additional neural circuitry in the model.

An animal would need to recall the details of an environment
stored in long-term memory for two main reasons. First, there
could be transient environmental conditions that impede sensory
input and thus leave the animal with little direct access to spatial
information. Second, the animal might need to remember what
would be around it at an imagined location for the purposes of
planning. For the former case, we assume that the model has
enough sensory information to orient the head direction system.
Although we only deal with visual information here, the model
could be extended easily to include other cues such as vestibular
input for this purpose as well. Once the head direction system is
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oriented, the available but incomplete sensory input to the parietal
window and perirhinal cortex can flow to the hippocampus in a
bottom-up phase and activate an attractor state for the complete
corresponding allocentric representation. During the next top-
down phase, this attractor state reconstructs the environmental
geometric information in the parietal window. Once the model has
reconstructed the geometry of the environment, it must be able to
identify the boundaries/landmarks that surround it. This is assumed
to occur via directed attention to a spatial location. We simulate
this in our model as extra activation (calculated from Equation
A17) being directed to the area of interest in the parietal window.
The boundary within the focus of attention in the parietal window
will generate a corresponding focus of activation on its allocentric
location within the BVC layer. The associative pathways within
the medial temporal lobe can then retrieve the object’s identity in
the perirhinal cortex.

As a concrete example of spatial attention, if the model is
instructed (perhaps by some prefrontal brain region controlling
planned eye movements, not modeled here) to identify a boundary
to its egocentric left, then extra activation is directed to the parietal
window neurons that represent space to the egocentric left. This
activation then flows through the transformation circuit, to the
BVC layer, and finally to the perirhinal layer. The extra activation
from the parietal window increases the firing rate of all perirhinal
neurons corresponding to boundary identities that the model could
encounter to its left when it has the current heading direction. The
correct boundary identity, consistent with the subject’s current
location, can then be disambiguated by allowing the top-down
connections in the model to operate at a low level (5% of the
normal top-down value) even during a bottom-up phase. In this
way, the place cell activity can provide the requisite disambigua-
tion. For consistency, we also allow bottom-up connections to
operate at the same reduced level during top-down phases.

In cases in which an animal needs to recall the details of its
surroundings from a particular imagined point of view, we assume
that the suggestion of (in the case of humans) or the memory of a
highly salient environmental feature located at some point in the
animal’s egocentric space might be enough to orient the head
direction system. The correct perirhinal units could also be acti-
vated by this process, and activity corresponding to the location of
the feature could be sent to the parietal window. During the next
bottom-up phase, the processes of pattern completion and directed
attention would then follow as described above.

Spatial Updating and Mental Exploration

The recall processes described in the previous section are useful
only if an animal requires stationary “snapshots” of an environ-
ment. However, a moving animal, often faced with partially or
fully occluded sensory information, requires an accurate, real-time
representation of its surroundings. Similarly, if an animal wishes to
plan a route through a familiar environment, the ability to perform
mental exploration of the surrounding space would be useful.

A key part of our overall theory is that parietally generated
egocentric mental imagery can be manipulated via real or mentally
generated idiothetic information in order to accomplish spatial
updating or mental exploration in familiar environments. A de-
tailed neural mechanism for accomplishing such tasks in the case
of pure short-term or working memory has been described else-

where (Byrne & Becker, 2004). Here we are concerned primarily
with the updating process applied to medial temporal lobe depen-
dent long-term memory. For this case, we assume that rotational
and forward-translational egomotion signals act upon the egocen-
tric parietal window representation of space via different mecha-
nisms. In the case of rotation, the egomotion signal causes head
direction cell activity to advance sequentially through the head
direction map, thus rotating the image that is projected into the
parietal window from the BVCs. This velocity-modulated updating
of head direction is similar to the model described by Stringer et al.
(2002). The potential for such one-dimensional continuous attrac-
tor networks to account for multiple aspects of the head direction
cell assembly has been investigated in detail by Conklin and
Eliasmith (2005); Goodridge and Touretzky (2000); Hahnloser
(2003); Redish, Elga, and Touretzky (1996); among others. How-
ever, a detailed summary of such work is beyond the scope of this
article. For the case of forward translation, the egomotion signal
gates the top-down connections from the parietal transformation
layer to the parietal window such that the “normal” top-down
weights connecting these regions are down regulated, whereas a
second, alternate set of top-down weights are up regulated. With
no forward velocity signal, the normal top-down connections per-
form reconstruction of a head-centered egocentric representation
of the model’s current spatial surroundings in the parietal window
by using information originating from place cell activity. Once up
regulated by the velocity signal, the alternate set of top-down
connections performs an almost identical function, except that the
representation of space reconstructed in the parietal window is of
the model’s current surroundings but shifted backwards slightly in
the model’s egocentric space. When the next bottom-up phase
begins, the shifted spatial information, represented as parietal
window activity, flows through the transformation and BVC layers
to activate place cells that correspond to the location slightly ahead
of the model’s current location. This process repeats itself during
the next top-down/bottom-up cycle until the velocity signal dissi-
pates, resulting in a continuous relocation of the model’s internal
representation of its location in space. Further details of this
updating procedure can be found in the Appendix.

Learning in the Model

The purpose of our model is to reproduce experimental data and
to generate novel predictions of spatial behavior in adult animals,
rather than to account for learning in a biologically realistic man-
ner. Hence, we use a simplistic Hebbian learning procedure that
associates together prespecified activation patterns in each layer of
the model, in order to train all of the model connection strengths
except for those involved with spatial updating/mental exploration.
The latter connection strengths are calculated as described in the
Appendix. Briefly, learning for the remainder of the weights
involves positioning the model at numerous random locations and
heading directions within an environment while, at each of these
locations, sequentially directing attention to each landmark seg-
ment viewable from the current location. For each attending event
at each location, appropriate activation patterns are imposed upon
the model layers and connection strengths between neurons are
updated via a simple correlational rule. Once training is complete,
weights are normalized. A detailed description of the training
procedures is provided in the Appendix.
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It should be noted that the transformation circuitry in our model
is only trained once, but the medial temporal component is re-
trained on each unique environment in the simulations reported
here. Training on multiple environments with the relatively small-
scale models used here can result in a degradation of information
when it travels through the transformation circuitry and activation
of an incorrect hippocampal attractor state. This problem could be
addressed by including a greater number of model neurons in the
transformation layer. Additionally, a larger scale version of the
medial temporal lobe portion of the model should, in principle, be
capable of storing multiple environments in distinct subsets of
place cells (a possible role for the dentate gyrus and CA3 recurrent
connections; McNaughton & Morris 1987; Samsonovich & Mc-
Naughton, 1997). There is no reason to expect that the simulta-
neous storage of attractor states corresponding to multiple envi-
ronments would affect any of the results we obtain from the model
in this article.

Simulation 1: Recall of Landmarks and Geometry in
Hemispatial Neglect

Method

In order to simulate representational neglect (see introductory
section and Bisiach & Luzzatti, 1978), we first tested the ability of
the intact model to recall environmental geometry and landmark
identity. This was accomplished by first training the medial tem-
poral component of the model on the simplified cathedral square
depicted in the upper left panel of Figure 7. During training, the
allocentric reference frame was taken to be aligned with this
depiction of the environment so that its y-axis would be perpen-
dicular to the inward facing walls of Buildings 1 and 3 but parallel
to the inward facing walls of Buildings 2 and 4. In reality, it is
likely that the orientation of the allocentric reference frame within
the environment would be set by the head direction system align-
ment when the animal first experiences the environment. Once
training was complete, the model was cued to imagine itself facing
the cathedral in the trained environment by injecting appropriate
activation into the head direction, parietal window, and perirhinal
identity layers. Cuing activation for the parietal window was
calculated by applying Equation A5 to a discretized linear bound-
ary, representing the front of the cathedral, located directly in front
of the model in the egocentric reference frame. Similarly, cuing
activation for the perirhinal neurons was calculated from Equation
A3, with the cathedral (Building Identity 1) being the attended
landmark. Finally, it was assumed that the cathedral is sufficiently
salient that cuing its location relative to the subject is enough to
orient the head direction system. Thus, activation for the head
direction layer was calculated from Equation A6, with the heading
direction (¢) set to zero, indicating perfect alignment between
egocentric and allocentric reference frames. The cuing activations
were applied to the model for two full bottom-up/top-down cycles,
after which they were down regulated, and the retrieved attractor
states in the head direction system and the hippocampal place cell
layer maintained the model’s parietal window representation of the
imagined geometry of the environment.

In order to “ask” the model to identify the boundaries that would
be visible from the current viewpoint (see Figure 7), we simulated
the focus of attention along four different directions: left, right,
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Figure 7. Top four panels: Activation in the various model layers aver-
aged over a full cycle after it was cued to face the cathedral (Building 1).
Upper left: Environmental boundaries are represented by gray walls su-
perimposed upon the hippocampal place cell representation. Here, the
firing rates of all hippocampal place cells are presented, with each shown
at its corresponding grid point within the environment. Bottom left: The
head direction (HD) activity peak indicates that the model was facing
“forward” relative to the stored allocentric map. Therefore, parietal win-
dow (PW) activity (bottom right), which is the model’s representation of its
surrounding egocentric space, was highly similar to parahippocampal (PH)
boundary vector cell activity (upper right), which corresponds to the
model’s allocentric representation of space. The various symbols superim-
posed upon the egocentric PW representation indicate the attention direc-
tions. Bottom: Activation in perirhinal (PR) identity neurons at the end of
the first bottom-up phase after attention is directed in the PW. For example,
when attention is directed to the egocentric right (“+”), PR neuron 2,
which corresponds to Boundary/Building 2, is the most active identity
neuron.

forward, and backward. In each direction, the corresponding acti-
vation calculated from Equation A17 was injected directly into the
parietal window. During a subsequent bottom-up phase, this acti-
vation flowed forward through the transformation and parahip-
pocampal layers to activate the correct perirhinal identity neuron.
For example, in the case of rightward attention, the correct re-
sponse would be perirhinal activity corresponding to Building 2
(see the Appendix for details).

Next, the model was cued to imagine itself in the square facing
away from the cathedral. This was accomplished by focusing
attention on a boundary directly behind the model in the parietal
window, while simultaneously activating the perirhinal neurons
representing the visual features of the cathedral and the allocentric
head direction 180° away from the current egocentric frame.
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Once it was confirmed that the model could identify surround-
ing landmarks from different viewpoints, hemispatial neglect was
simulated by performing a random knock out of 50% of the
parietal window neurons representing the left side of egocentric
space and then repeating exactly the same procedures as just
described for testing the intact model.

Results and Discussion

The ability of the intact model to recall environmental geometry
and landmark identity, when cued that it was facing the cathedral,
is shown in Figure 7. The top four panels show the activity in the
various network layers averaged over one full cycle after the
removal of the cuing activity. Although the spatial resolution of the
model’s representation of the environment is coarse, the geometry
represented in the parietal window is roughly correct. The bottom
panel of Figure 7 shows the activity of perirhinal neurons at the
end of a bottom-up phase. Perirhinal activity is plotted with open
circles for leftward attention, asterisks for forward attention,
crosses for rightward attention, and triangles for backward atten-
tion, indicating that the model can identify all landmarks correctly.
Performance of the intact model when cued that it was facing away
from the cathedral is shown in Figure 8. The resultant activities of
the various network layers averaged over a full cycle after down
regulation of cuing inputs are shown in the top four panels. Once
again the model formed the correct egocentric representation of
spatial information in the parietal window and directed attention
resulted in the correct identification of the surrounding boundaries.
For example, when attention was directed to the egocentric right,
the identity of Building 4 was activated in the perirhinal layer.
Building 4 would be to the right of the model if it were facing
away from the cathedral.

Results of the simulations with the lesioned model, simulating
hemispatial neglect, are shown in Figures 9 and 10 and corre-
sponding to Figures 7 and 8, respectively. From these results, it is
clear that the model could identify landmarks to its right, but not
to its left, regardless of its imagined heading direction. These
simulation results are consistent with a central tenet of our model,
namely, that allocentric representations of space are formed in
long-term memory and are transformed into egocentric views as
needed, in the service of memory recall and imagery. Moreover,
our model provides a mechanistic explanation for patterns of
deficits observed in perceptual and representational neglect pa-
tients, a previously perplexing phenomenon in neuropsychology.
Both the long-term memory representation and the transformation
mechanism are intact, whereas the egocentric representation pro-
jected from long-term memory, and/or the transformation mecha-
nism itself, is faulty. This could arise in patients either from a
lesion to the pathway from the transformation circuit to the parietal
window (resulting in pure representational neglect) or from a
lesion to the parietal window itself (resulting in both perceptual
and representational neglect). Pure perceptual neglect in the ab-
sence of representational neglect could arise from a lesion along
the sensory or motor pathways projecting into and out of posterior
parietal cortex. Testing of these predictions based on currently
available data is difficult because of the extensive lesions suffered
by most patients suffering from unilateral neglect. For the case of
perceptual neglect, recent studies indicate that a disconnect be-
tween parietal cortex and prefrontal areas (Doricchi & Tomaiuolo,
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Figure 8. Top four panels: Activation in the various model layers aver-
aged over one full cycle after it was cued to face away from the Cathedral.
The head direction (HD) activity peak indicates that the model was facing
“backwards” relative to the stored allocentric map. Therefore, parietal
window (PW) activity is rotated 180° relative to boundary vector cell
activity. The various symbols superimposed upon the egocentric PW
representation indicate the directions in which attention was directed.
Bottom: Activation in perirhinal (PR) neurons at the end of the first
bottom-up phase after attention is directed in the PW. PH = parahippocam-
pal.

2003; Thiebaut de Schotten et al., 2005) or between parietal cortex
and medial temporal regions (Bird et al., 2006) is critical to a
realization of the phenomenon. However, we are unaware of any
data that so clearly indicate which regions of the brain must be
damaged in order to induce pure representational neglect, the focus
of the current set of simulations.

Simulation 2: Spatial Updating During Physical and
Mental Navigation

One of the key functions of the model is its ability to perform
spatial updating of its internal representations of location, given a
motion signal. Spatial updating is critical for navigation in the
absence of perceptual input (path integration), for mental imagery
involving viewpoint changes, and for path planning. Spatial up-
dating should allow relatively normal navigation and place cell
firing over short durations in the absence of perceptual input, and
it should account for data on spatial updating such as that of Wang
and Brockmole (2003), described in the introductory paragraphs.
In our model, path integration occurs outside of the hippocampus
through updating the parietal egocentric representation. Further,
the same machinery accounts for the process of mental navigation
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Figure 9. Top four panels: Activation in the various model layers aver-
aged over one full cycle after the lesioned model was cued to face the
cathedral. Bottom: Activation in perirhinal (PR) neurons at the end of the
first bottom-up phase after attention is directed in the parietal window
(PW). PH = parahippocampal; HD = head direction.

by generating an imagined motor signal in place of the efference—
proprioceptive—vestibular signal generated by actual motion. This
should allow the model to address performance and reaction time
data in tasks in which the subject is asked to respond from a
different imagined viewpoint and/or location (e.g., Diwadkar &
McNamara, 1997; Easton & Sholl, 1995; Rieser, 1989; Shelton &
McNamara, 2001) or asked to simulate some aspects of spatial
planning.

Method

In order to simulate spatial updating or mental navigation, the
medial temporal component of the model was trained on the
“two-room” environment shown in the upper left panel of Figure
11, with the allocentric reference frame taken to be aligned with
the vertical axis of the environment as depicted. The training
procedure and architecture for this component of the model were
identical to those used in the previous set of simulations, except
that in addition, within the parietal window, the velocity-gated
translational weights given by Equation A9, and the rotational
head direction weights, trained as described in the Appendix, now
come into play.

After training was complete, the model was first cued to a
location near to and directly facing Wall 1. Such cuing would be
equivalent to asking the model to imagine itself facing Wall 1 in
the two-room environment. This was accomplished as in the pre-

vious simulations by injecting appropriate activations into perirhi-
nal, head direction, and parietal window neurons for two full
cycles. Attention was then focused along four different directions,
leftward, rightward, forward, and backward, to demonstrate that
the model could identify the surrounding landmarks from memory.

Next, we simulated spatial updating after several steps of imag-
ined egomotion. The same situation could arise during real navi-
gation if an animal spontaneously loses sensory information about
its real surroundings (e.g., navigating in the dark). In either case,
attractor states in the head direction system and in the hippocampal
formation of our model are able to maintain an internal represen-
tation of the real/imagined surroundings. Mental exploration or
spatial updating based on this self-sustaining internal representa-
tion was simulated in the model by a series of eight egomotion
steps. This egomotion, if assumed to be generated by real idio-
thetic information, would correspond to spatial updating, or if
generated by a mental equivalent, would correspond to mental
exploration. In the first step, to simulate making a 180° turn, a
counterclockwise rotational velocity signal lasting for 150 time
units gated the rotational head direction weights until the model’s
egocentric representation of space rotated by a full 180°. In the
second step, to simulate forward egomotion, a translational veloc-
ity signal lasting 135 time units gated the transformation to parietal
window translational weights, causing the model’s egocentric rep-
resentation of the locations of boundaries to translate backwards.
Similarly, a further six egomotion steps were performed to com-
plete the simulation.

HD
PR Identity Neurons

* 3

| 8 R |

1 2 3 4
Boundary/Neuron |dentity

-y
T

Firing Rate
< < (=1 (=1
o N n o®»

Figure 10. Top four panels: Activation in the various model layers
averaged over one full cycle after the lesioned model was cued to face
away from the cathedral. Bottom: Activation in perirhinal (PR) neurons at
the end of the first bottom-up phase after attention is directed in the parietal
window (PW). PH = parahippocampal; HD = head direction.
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Figure 11. Top four panels: Activation in the various model layers

averaged over one full cycle after it was cued to localize itself in the
“two-room” environment facing Wall 1. Environmental boundaries are
represented by gray walls superimposed upon the hippocampal represen-
tation. The various symbols superimposed on the parietal window (PW)
representation indicate the sequential attention directions. Bottom: Activa-
tion in perirhinal (PR) neurons for the various attention conditions at the
end of the first bottom-up phase after attention is directed in the PW. PH =
parahippocampal; HD = head direction.

As a control, we compared spatial updating in imagined versus
sensory-driven navigation. Although the model’s ability to per-
form spatial updating/mental exploration on internally maintained
representations of space is of primary interest, it must also function
in a consistent way during real navigation through a familiar
environment with intact sensory information. Thus, we simulated
the same situation as above but in the presence of accurate sensory
cues during the eight steps of egomotion. In this case, sensory
information corresponding to visible boundaries calculated from
Equation A5 was simultaneously injected into the parietal window
during egomotion.

Results and Discussion

The ability of the model to retrieve the appropriate context in the
two-room environment, when asked to imagine itself facing Wall
1, is shown in Figure 11. Network activity averaged over a full
cycle after down regulation of the cuing inputs can be seen in the
top four panels of Figure 11. The results of the four directed
attention events are shown in the bottom panel of Figure 11,
indicating that the model could also identify the surrounding
landmarks.

The performance of the model after several steps of imagined
egomotion is shown in Figures 12 and 13. Figure 12 shows
activation in the various network layers averaged over one full
cycle following the first two egomotion steps. The remaining six
steps brought the model’s internal representation of space to that
shown in Figure 13, where it was nearby and facing Wall 2. Three
directed attention events show that the model could correctly
identify surrounding boundaries from this new viewpoint (see
bottom panel of Figure 13).

In the case of sensory-driven navigation, the analogous results to
Figures 11, 12, and 13 are shown in Figures 14, 15, and 16,
respectively. Results of the sensory-driven simulations after eight
steps of egomotion are nearly indistinguishable from the corre-
sponding results with imagined egomotion.

The fact that an egocentric translational velocity signal causes
spatial updating/mental navigation to occur at a constant velocity
is discussed in more detail with respect to Simulation 4 and in the
General Discussion. Here we simply note that it is consistent with
the reasonably accurate (if scaled) correspondence between mental
navigation times and actual navigation times (see, e.g., Ghaem et
al., 1997; Kosslyn, 1980).

Simulation 3: Place Cell Firing With Head Direction Cell
Lesions

In Simulations 1 and 2, we compared our model against behav-
ioral data. The purpose of Simulations 3 and 4 was to evaluate the
adequacy of our model in explaining and predicting data at the
level of single-unit recordings. For this third set of simulations, the
static model, that is in the absence of egomotion, is evaluated with
respect to place cell firing after lesions to the head direction
system. In Simulation 4, the model is evaluated under conditions
of cue conflict between direct sensory and path-integrative inputs.

Calton et al. (2003) have shown that rats with lesions to the
anterodorsal thalamic nuclei or to the postsubiculum, two locations
where head direction cells have been found, show altered place cell

Figure 12. Activation in the various model layers averaged over one full
cycle after the application of the rotational velocity signal for 150 time
units followed by a forward translational velocity signal for 135 time units.
PH = parahippocampal; HD = head direction; PW = parietal window.
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Figure 13. Top four panels: Activation in the various model layers
averaged over one full cycle at the end of the eight step sequence of
egomotion. Bottom: Activation in perirhinal (PR) neurons for the various
attention conditions at the end of the first bottom-up phase after attention
is directed in the parietal window (PW). PH = parahippocampal; HD =
head direction.

firing characteristics when compared with intact animals. Al-
though variations in place cell firing properties between the two
lesioned groups were seen, there were a number of characteristics
in common to both groups. Specifically, place cells in both groups
showed roughly normal in-field firing but elevated out-of-field
firing. Additionally, this out-of-field firing showed dependence on
heading direction.

In order to understand how our model could address the results
of Calton et al. (2003), it is useful to return briefly to the descrip-
tion of how incoming sensory information activates the correct
place cell attractor states. Recall, we have assumed that incoming
information about environmental geometry first reaches the ego-
centric parietal window representation before being transformed
via the transformation layer into an allocentric BVC representa-
tion. The BVC pattern, in conjunction with perirhinal activity, then
activates the appropriate hippocampal attractor state. This trans-
formation relies upon a gating mechanism driven by the head
direction system that will be clearly disrupted if head direction
cells are destroyed. Thus, under normal circumstances, a given
pattern of activity in the head direction system allows only one
transformation sublayer to project activity onto the BVC layer.
However, if the former is damaged, its gating function will be
compromised, reducing the activity received by the BVC layer
from the correct transformation sublayer and increasing the activ-
ity from other sublayers. Depending on the extent of the lesion to

Figure 14. Results for the simulation in which sensory information about
the environment is being continuously input to the parietal window (PW)
representation throughout the duration of the simulation. PH = parahip-
pocampal; HD = head direction.

the head direction system, the garbled BVC representation could
still overlap significantly with the representation required to acti-
vate the appropriate attractor state given the model’s current sen-
sory information, or it could be that the overlap is very small. In
intermediate cases, the correct hippocampal place cells might
receive enough activation to fire, but other neurons might be
driven past their firing thresholds as well.

Method

A realistic simulation of the effects of lesions to the head
direction cells in our model is not possible because of the use of a
single inhibitory interneuron that causes each head direction cell to
inhibit all transformation sublayers equally. A more realistic cir-

Figure 15. Results for the simulation in which sensory information about
the environment is being continuously input to the parietal window (PW)
representation throughout the duration of the simulation. PH = parahip-
pocampal; HD = head direction.
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Figure 16. Results for the simulation in which sensory information about
the environment is being continuously input to the parietal window (PW)
representation throughout the duration of the simulation. PH = parahip-
pocampal; HD = head direction.

cuit would use a population of inhibitory interneurons that were
connected randomly within the constraint that they would achieve
the same gating function (in combination with excitatory head
direction connections to the transformation layer). We did not use
such a population because, given the unnatural training methods
used, it would have behaved like a single unit anyway. With a
more natural configuration, partial lesions to the head direction
system would result in reduced excitation to the selected transfor-
mation sublayer and decreased inhibition to random regions of the
overall transformation layer. To simulate the equivalent effect in
our model, for each lesioned head direction, the excitatory head
direction input to the corresponding transformation sublayer was
reduced, whereas the inhibitory input to a random selection of
other transformation sublayers was decreased (see the Appendix
for details).

Because the lesioning procedure does not involve the medial
temporal structures, the latter region was trained once on the “box”
environment shown in Figure 17. The model was then localized at
numerous positions within the environment by injecting appropri-
ate egocentric sensory information from all of the environmental
boundaries into the parietal window neurons. At each location, the
sensory input was maintained for one top-down/bottom-up cycle,
and the activity of a selected place cell was recorded and averaged
over the bottom-up cycle. This procedure was performed for two
simulated head directions, one of which corresponded to perfect
alignment between egocentric and allocentric representations and
the other of which corresponded to perfect antialignment between
the two representations.

Results and Discussion

The average firing rates for a model place cell recorded when
the lesioned model was localized at numerous locations within a
rectangular subregion of the “box” environment are depicted in
Figures 17 and 18. In Figure 17, these rates correspond to the
aligned heading direction, whereas in Figure 18 the results corre-
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Figure 17. Activity of a single place cell recorded from the model with
a simulated head direction cell lesion. Recordings were made when the
model was localized at numerous points within the dashed rectangle. In this
simulation the model’s head direction was consistent with perfect align-
ment between parietal window and boundary vector cell representations of
space. Note also that the recorded cell would fire maximally at the “X” for
all head directions in the nonlesioned model.

spond to the antialigned simulation condition. Clearly, the firing
field of the model neuron varied with simulated head direction, and
moreover, its peak-firing location for either head direction did not
correspond to the location where the cell would have attained its
maximal firing rate in the nonlesioned model (marked with an “X”
in both figures). In addition, for the aligned condition, the cell
exhibited a firing maximum in one location but with an additional
area of elevated firing near “X.” These data are qualitatively
similar to the data shown in Figure 4B of Calton et al. (2003).
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Figure 18.  Activity of a single place cell from the model with a simulated
head direction consistent with perfect antialignment between parietal win-
dow and boundary vector cell representations of space. Note also that the
recorded cell would fire maximally at the “X” for all head directions in the
nonlesioned model.
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Our model makes two unique predictions regarding the outcome
of experiments similar to those of Calton et al. (2003). First, a
place cell that has a prelesion preference for a location about which
there is a high degree of rotational symmetry (e.g., the center of a
cylinder) should maintain its place preference postlesion. Con-
versely, place cells that show prelesion preferences for locations of
low rotational symmetry should tend to show shifts in their pre-
ferred locations after a lesion. An example of this latter effect is
seen clearly in the simulation presented in Figures 17 and 18.
Second, the relative firing rates for place cells when measured at
locations of high rotational symmetry should demonstrate little
dependence on head direction after a lesion. For example, if Cell
A demonstrates a high postlesion firing rate at the center of a
cylinder for a given head direction, and if Cell B demonstrates a
low firing rate at that location and head direction, then for all other
head directions Cells A and B should show similar relative firing
rates at that location. Conversely, the relative firing rates for place
cells when measured at locations with lower levels of rotational
symmetry should exhibit higher levels of head direction depen-
dence after a lesion.

In order to understand these predictions, one only needs to note
that each transformation sublayer contains a representation of the
same egocentric space but rotated about the origin. Therefore, if
the egocentric parietal window representation shows a reasonable
degree of rotational symmetry at a given location, then allowing
extra regions of the overall transformation layer to project to the
BVCs will not have a large effect on the resultant geometric
information represented there, regardless of head direction. Hence,
a place cell that fires maximally/minimally at such a location
before a head direction system lesion would still receive high/low
levels of stimulation there after a lesion; moreover, because of the
rotational symmetry, it will do so for all head directions.

Simulation 4: Place Cell Firing With Conflicting Visual
and Path-Integrative Inputs

The basis of the medial temporal component of our model was
derived from a simple feed-forward model of place cell firing
(Hartley et al., 2000; O’Keefe & Burgess, 1996) driven by input
from BVCs. This earlier model included a number of simplifica-
tions, one of which was that BVCs and therefore place cell firing
rates were independent of firing history. However, memory in
general, and path integration in particular, make important contri-
butions to place cell firing, in addition to immediate sensory
perception such as vision, olfaction, et cetera. For example, place
cells can continue to fire normally in the dark (O’Keefe, 1976);
path integration, distant visual cues, and multimodal local cues can
be pitted against each other to control the orientation of place cell
firing (Jeffery, Donnett, Burgess, & O’Keefe, 1997; Jeffery &
O’Keefe, 1999); and congenitally blind rats show normal place
fields once they have explored the polarizing environmental cues
(Save, Cressant, Thinus-Blanc, & Poucet, 1998).

Here we have coupled the medial temporal model to a parietal
system capable of spatial updating. An obvious test of this ex-
tended model is to determine whether it can capture the joint
effects of path integration and sensory perception on place cell
firing, thereby extending the simple feed-forward place cell model.
Another line of evidence for the differential contributions of path
integration and sensory perception to place cell firing comes from

Gothard et al. (1996), who examined the activity of hippocampal
place cells in rats running along a linear track. By varying the track
length during recording sessions, they were able to pit sensory and
locomotor cues against each other. In our final set of simulations,
we sought to compare the performance of the model to Gothard et
al.’s data.

Gothard et al. (1996) trained rats to run back and forth along a
narrow, elevated track with food cups at either end. One food cup
was fixed directly to one end of the track, and the other was fixed
to the floor of a sliding box that could be in any one of five
locations (Box 1-Box 5), thereby changing the overall track length
(see the left panel of Figure 19). Rats were habituated to the
apparatus in the maximum length, or Box 1 state, for 3 to 5 days
prior to recording. During a recording session, an animal was
placed in the box at one of the five positions and allowed to run to
the fixed food cup (outbound journey). The box was then moved
to a new position before the rat turned around to make the return
journey (inbound journey). Most cells fired prederentially in one
direction of running, consistent with previous experiments on
linear tracks (McNaughton, Barnes, & O’Keefe, 1983; O’Keefe &
Reece, 1993). The firing profile for each cell was calculated
separately for all types of journey (e.g., Box 1-out, Box 2—out,
Box 1-in, Box 2-in) and was compared with the corresponding
Box 1 profile. Specifically, the amount by which the peak firing
location for a given cell was shifted from its preferred location in
the Box 1 condition was plotted against the corresponding shift of
the box relative to its Box 1 position (see Figure 19). This measure
is sensitive to whether the place field shifts with the movable box
or remains at a fixed location relative to stationary cues, but note
that deformations in firing field shape occurred, such as bimodal
fields as well as simple shifts. By fitting a regression line to the
data for a given cell across box positions, a displacement slope,
normalized to range between 0 and 1, was calculated. A slope of
0 corresponds to firing peaked at the same location relative to the
fixed food cup in all conditions, whereas a slope of 1 corresponds
to peak firing at the same location relative to the movable box,
regardless of its position. Thus the movable box controls the
location of firing fields with a large displacement slope, whereas
the fixed food cup and other room cues control the location of
fields with small displacement slopes.

Gothard et al.’s (1996) displacement slope results for inbound
and outbound selective neurons are shown in Figure 20 along with
some sample firing fields. Neurons that fired near the box or the
cup in the original configuration continued to fire near the box or
cup in the other configurations. Similarly, cells that fired in be-
tween the two cups did so in all configurations, except on the
shortest journeys when they did not fire at all. However, for most
of the distance traveled on a given journey, place cell firing
appeared to be predominantly controlled by the landmark which
the animal was moving away from. For outbound journeys, firing
peaked near to the box in the Box 1 configuration have displace-
ment slopes around 1, and this value gradually decreases to zero
for neurons with peak firing positions farther away from the box.
However, the slope value remains above 0.5 for peak firing loca-
tions much more than for those halfway down the track from the
box. This additional influence of the cue from which the rat is
running is also clearly evident for the inbound journeys in which
most neurons, excepting those with peak firing very close to the
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Figure 19. Left: Linear track apparatus used by Gothard et al. (1996). Top middle: Rat on outward journey
from box to fixed cup for the five different box positions. Top right: Hypothetical average firing patterns for a
place cell in each of the five outward conditions plotted against relative position along the track in the box1
condition (0 is the position of the box in the box1 condition, whereas 1 is the position of the fixed cup). The
dashed diagonal line is the regression line used to calculate displacement slope, which is 1.0 for this cell because
it fires near the box in all conditions. The vertical dashed line shows the location of peak firing on the box 1-out
trials. Bottom middle: Rat on inward journey from fixed cup to the box for the five different box positions.
Bottom right: Hypothetical average firing patterns for a place cell in each of the five inward conditions plotted
against relative position along the track in the box1 condition. This cell fires near the fixed cup in all conditions,
giving a displacement slope of 0.0. From “Dynamics of Mismatch Correction in the Hippocampal Ensemble
Code for Space: Interaction Between Path Integration and Environmental Cues,” by K. M. Gothard, W. E.
Skaggs, and B. L. McNaughton, 1996, Journal of Neuroscience, 16, p. 8028. Copyright 1996 by the Society for

Neuroscience. Adapted with permission.

box, are controlled by the cup, showing displacement slopes close
to zero.

The BVC model of place cell firing (Hartley et al., 2000;
O’Keefe & Burgess, 1996) predicts much of Gothard et al.’s
pattern of data, for example, that the location of maximal firing
will tend to remain a fixed distance from the nearer of the two
boundaries and how the fields stretch, develop subpeaks, reduce in
firing rate, and disappear when the component BVCs fail to
coincide in one or other new configuration. However, the in-
creased influence of the boundary behind the rat compared with
the one in front is not captured by this model (also noted in
O’Keefe & Burgess, 1996). These results appear to require an
interaction between BVCs responsive to the inconsistent visual
cues and path-integrative locomotor information (see also Redish
et al., 2000), consistent with the idea that both path-integrative and
perceptual inputs are required to determine the hippocampal rep-
resentation of location (O’Keefe & Nadel, 1978). Here we inves-
tigate the behavior of the model, which now includes both BVCs
and motion-related spatial updating, in the Gothard et al. paradigm.

We model initial place cell firing when the animal is placed at
either end of the apparatus, as consistent with the place cell firing
for that location within the full-length track. This assumption is

reasonable given that the majority of local cues available at either
location are consistent with this representation. These cues consist
of the three box walls for the box and all the other room cues at the
fixed food cup. Upon leaving the start position for a given trial,
input from both locomotion-related updating and from visual cues
combine to update the animal’s internal representation of its po-
sition. Within the full-length track (Box 1) condition of Gothard et
al.’s (1996) experiment, neuronal activity follows a “normal”
continuous trajectory through the set of states representing all
intermediate locations within the full-length track and terminating
with the state corresponding to the destination end of the track. At
each stage, the perceptual input from both ends of the track is
consistent with the internally updated input from the previous step.
In the remaining conditions (Box 2-Box 5) the visible landmark
ahead is closer to the rat than would be consistent with the
motion-updated representation; this causes previously unimodal
place fields to reduce in peak activity and to deform, showing a
compromise between firing at a fixed distance from both ends of
the track. At the start of an outbound journey, the cues behind the
rat and the ideothetically updated internal representation predom-
inantly control place cell firing, but as the rat proceeds along the
track there is an increasing influence of the nearer than expected



360

OUTBOUND JOURNEYS

1 2 k] 4
Clle o o A - i
B =7 e W .,‘

e UL U e

] S i 1 - |

EE— — (| ImT -
—

BYRNE, BECKER, AND BURGESS

slope
H Y
11 AA im‘, o i
& :3“. .,
Ly PO r
. Y F
&a A & .
05 = “t‘ - l‘: a
* a
ol .n:‘
AT
o — Y '_J “_‘!“g‘f
a 0.25 0.5 075 4+ e’y
peak firing along the track
slope
& &
A . &
1‘ # . n
~ &~
A‘ A ‘. & b
05 L .
Y L. A“ "
é#u‘i‘ﬁ‘ &
AA
P P ot .i.u,i‘-hﬁ'm'i.—
o 0.25 0.5 0.758

peak firng along the track

Figure 20. Upper left: Averaged firing profiles of four outward selective neurons in each condition. Rectangles
represent the movable box. Upper right: Displacement slopes for multiple outward selective cells plotted against
their peak firing positions in the box1 condition. Positions are relative to full track length, with O representing
the box position in the box1 condition and 1 representing the position of the fixed food cup. Lower panels:
Equivalent results for inward selective cells. From “Dynamics of Mismatch Correction in the Hippocampal
Ensemble Code for Space: Interaction Between Path Integration and Environmental Cues,” by K. M. Gothard,
W. E. Skaggs, and B. L. McNaughton, 1996, Journal of Neuroscience, 16, p. 8031. Copyright 1996 by the

Society for Neuroscience. Reprinted with permission.

destination end. At some point past the midpoint of the track, there
will be a transition in the cues—from the cues behind the rat to the
cues in front of the rat—controlling place cell firing. For the
shortest track conditions, some place cells with fields near to the
“transition point” may not fire at all, having roughly equal inputs
from both ends on the full-length track, which entirely fail to
overlap on the short track. In this case, the inferred location of the
rat will jump from one reference frame to the other rather than
making a smooth transition.

Before describing our simulations of Gothard et al.’s (1996)
experiment in detail, we note one further piece of data. The
preceding explanation predicts that if sensory information about
the nearer than expected destination end of the track is degraded,
then the internally updated representation of landmark positions
should take precedence in the control of place cell firing for an
even longer portion of the journey. Consistent with this, when rats
performed Gothard et al.’s linear track task in darkness, it was
found that the cue from which the rat was running maintained
control over place cell firing for a greater portion of the journey
than it did in the light (Gothard et al., 2001).

Method

To simulate the key aspects of the linear track environment of
Gothard et al. (1996), we trained our model on a symmetric

environment consisting of two “boxes” that open toward each
other, as in the lower left/middle panels of Figure 21. Because of
the absence of surrounding room cues, either box can be consid-
ered the movable box. In this way, we were able to perform one set
of simulations representing both outbound and inbound journeys.
Medial temporal and parietal connections were set in the same
manner as for the previous simulations. Before performing actual
simulations of the Gothard et al. data, the forward translational
velocity of the place cell representation under application of an
egocentric velocity signal had to be calibrated. This was accom-
plished by applying the velocity signal after cuing the model to
localize itself near Box 1, facing Box 2 (see Figure 21), until place
cell firing indicated localization near Box 2. The model’s repre-
sentation of its own location within the environment was calcu-
lated at any given instant by averaging the coordinates associated
with maximally active place cells. By fitting a regression line to
the roughly linear position-time data (see the rightmost panel of
Figure 21), a velocity of 0.044 space units per time unit was found.
Such a simulation would correspond to the model mentally ex-
ploring this familiar environment or performing spatial updating
during actual locomotion in the absence of visual cues.

In the next step of the simulation, the model was cued to a
location two units away from Box 1 along the direction toward
Box 2, facing Box 2. To simulate a shortened track, sensory input
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Left, top/bottom: Activation in parietal window (PW)/hippocampal neurons near the beginning of

a top-down phase after the model was cued to localize itself 2 units away from Box 1 facing Box 2.
Environmental boundaries are represented by gray walls superimposed on the hippocampal representation.
Middle, top/bottom: Activation in PW/hippocampal layer near the beginning of a bottom-up phase after
application of forward velocity signal. Right: The model’s representation of its location within the environment
as a function of time. Arb. = arbitrary; Ave. = average; PC = place cell.

corresponding to Box 2 was applied directly to the parietal window
layer at either 0, 2, 4, 6, or 7 units closer to the egocentric origin
than what would be consistent with the model’s learned represen-
tation for that location (see the top and bottom panels at the left of
Figure 22 for an example). For our initial set of simulations,
sensory information corresponding to Box 1 was not applied
because we assumed that this landmark did not have the salience
of the target landmark and a rat’s field of view is only approxi-
mately 300°. Locomotion was simulated by turning on the forward
velocity signal (corresponding to a velocity of 0.044 space units/
time unit) and moving the sensory input corresponding to Box 2
toward the origin of the parietal window coordinate system at the
same speed. When this sensory input came within one unit of the
origin, its movement was stopped, the velocity signal was turned
off, and the model was allowed to relax for 50 time steps before
sensory input was down regulated.

During locomotion, the rat’s head tends to bob up and down, so
that it might receive visual information from Box 1. With this in
mind, we performed a second set of simulations identical to those
just described but with input representing Box 1 also being applied
to the parietal window component of the model. For these simu-
lations, the additional input representing Box 1 was initially con-
figured so as to represent this landmark at 2 units behind the
animal. During simulated locomotion, this “sensory” input was
moved through the parietal window coordinate system at the same
speed and in the same direction as the input representing Box 2.

Finally, we performed simulations identical to those above but
with weakened overall connection strengths for the connections
terminating on the BVC layer (see Table 1 for parameter values).
The motivation for this was that a smaller proportion of space was

filled with landmark segments in the linear-track environment than
in the previous two environments. This was found to result in a
very low-resolution representation of space due to reduced lateral
inhibition in the BVC, transformation, and parietal window layers.
However, results for both sets of simulations (with and without
weakened parameters) are qualitatively similar, except for one
difference as discussed below. Furthermore, a more realistic sim-
ulation in which the BVC and parietal window layers covered a
more extensive region of space would have allowed for the inclu-
sion of distal landmarks (room walls, etc.). Such inclusion would
have generated increased lateral inhibition and a sharper represen-
tation of space without the need for altering any connection
strengths.

Results and Discussion

Results for the 6-unit-closer trial with no Box 1 sensory infor-
mation are shown in Figure 22. Of particular interest is the fact that
the maximum velocity of the place cell activity was 0.058 space
units/time unit or about 32% faster than when no inconsistent
sensory input was present (see the rightmost panel of Figure 22).
Therefore, as with the data reported by Gothard et al. (1996), place
cell activity was initially under the control of the nearest landmark,
but during locomotion it “caught up” to what it should have been
had it been primarily under the influence of the target landmark
(Box 2).

In addition to recording the trajectory of place cell activity, the
activity of 11 cells, representing equally spaced locations within
the environment, were recorded. If the simulation trials are con-
sidered as outward journeys, then we can plot the firing profiles in
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Figure 22. Left, top/bottom: Activation in parietal window (PW)/hippocampal neurons near the beginning of
a top-down phase after the model was cued to localize itself 2 units away from Box 1 facing Box 2. Additional
activation has been applied directly to PW neurons representing Box 2 at a position 6 units closer to the origin
than expected. Environmental boundaries are represented by gray walls superimposed on the hippocampal
representation. Middle, top/bottom: Activation in PW/hippocampal layer near the beginning of a top-down phase
after the model comes within 1 unit of Box 2. At this point, the velocity signal is switched off, and the sensory
input ceases to move. Right: The model’s representation of its location within the environment as a function of
time. Arb. = arbitrary; Ave. = average; PC = place cell.

Table 1
Model Parameters
Parameter Value
v 5 (50 for the inhibitory interneuron)
it 21
e 0
d)f“t HD 6
d)thR 0 1
inh
i 0.1
H 21
d)H,BVC 140
d)H,PR 25
d)BVC,H 900u
BVC.PR 1
GrRH 6,000
PR.BVC 75
TR,BVC 54
TR, PW 63
BVC.,TR 900>
PW. TR 880
$HD 15
TR, HD 85
TR, I 90
iI,HD 10
wXHD 2
(vaTR ¢’PW,TR

* Decreased to 150 for weakened boundary vector cell (BVC) input sim-
ulation on linear track. ° Decreased to 540 for weakened BVC input
simulation on linear track.

a way similar to that used by Gothard et al. (1996) to calculate
displacement slopes. In Figure 23, the firing profiles for 4 of the 11
recorded place cells in the condition with no Box 1 sensory
information are shown along with displacement slopes for all 11 in
both conditions. The same information is plotted in Figure 24 for
the weak BVC input simulations. For the weak BVC input condi-
tion, place cell activity of the navigating model in the shortest
track-length trial hopped from one representation of location
within the longest environment to another, resulting in a complete
lack of firing from one of the four selected cells. Given the
symmetry of our environment, displacement slope data can be
determined for inward journeys by transforming the data for out-
ward journeys as follows:

DS(x)—1 — DS(1 — x), (1)

where DS(x) is the displacement slope for a neuron with peak
firing position, x, in the Box 1 condition, and x is normalized to
range between 0 (at the movable box) and 1 (at the fixed food cup).
The transformed curves are shown in the lower right panel of
Figures 23 and 24. Notice that both sets of simulation-generated
displacement slopes show patterns consistent with Gothard et al.’s
results. In particular, the landmark that the animal is moving away
from maintains considerable control over place cell firing until the
target landmark is nearly reached. For the normal BVC input
conditions, this effect is similar regardless of whether we assume
the animal has access to sensory information from both Box 1 and
Box 2. For the weak BVC input simulations, we obtain a stronger
effect if we assume the model has sensory input from both boxes.
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Rectangles represent Box 1 and Box 2. Bottom, left/right: Displacement slopes calculated from the 11 sampled
model place cells during outward/inward journeys. Open squares represent results from full-model simulations
with only Box 2, and triangles represent results from full-model simulations with Box 1 and Box 2 sensory input.
Circles represent results from the simple boundary vector cell explanation. The dashed line is what would be
expected if landmarks exerted control over place cell firing in direct proportion to their proximity to the animal.
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In summary, our model performs in a manner consistent with the
Gothard et al. (1996) data. In a subsequent experiment, the influ-
ence of the cue from which the rat is running was seen to last for
a constant time, rather than for a constant distance, through the run
(Redish et al., 2000). This indicates either a time-limited useful-
ness for path integration (see, e.g., Etienne, Maurer, & Seguinot,
1996), or (as argued for in Redish et al., 2000) some temporal

Cell 1 Cell2

inertia in place cell firing that is possibly due to attractor dynamics
(which can be seen under other experimental circumstances; e.g.,
Wills, Lever, Cacucci, Burgess, & O’Keefe, 2005). Simulations
comparing time and distance in this way were not performed (we
used constant velocity) and remain for future work.

Finally, we compared our full model with a model lacking path
integration. By considering only the part of the full model con-
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Figure 24. Results for the simulations with weakened boundary vector cell input parameters. Note the hopping
behavior of place cell activity in the shortest track-length condition. Open squares represent results from
full-model simulations with only Box 2, and triangles represent results from full-model simulations with Box 1
and Box 2 sensory input. Circles represent results from the simple boundary vector cell explanation. The dashed
line is what would be expected if landmarks exerted control over place cell firing in direct proportion to their
proximity to the animal.
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sisting of the BVCs, the place cells, and the feed-forward connec-
tions from the BVC to the place cell layer, we were able to verify
that the simple BVC explanation of Gothard et al.’s (1996) results
does not produce the noted asymmetry. Specifically, we simulated
navigation along each track length by providing direct input to the
BVC neurons corresponding to the Box 1 and Box 2 landmarks
and then translated this input through the BVC coordinate system
at 0.044 space units/time unit. In this way, BVCs, and hence place
cells, were driven directly by sensory input, and the model’s
current representation of space was not affected by previous rep-
resentations of space or idiothetic information. Displacement slope
curves for these simulations were calculated as above and plotted
in the lower two panels of Figure 23 and 24. Notice that these
curves are approximately symmetric about the midpoint of the
full-length track. Thus the simple BVC model, in which distances
to boundaries in allocentric directions are the only concern, is
insufficient to produce the dependence on running direction noted
in Gothard et al. (1996), O’Keefe and Burgess (1996), or Redish et
al. (2000).

In the current model, perceptual inputs and motion-related up-
dating combine to influence the animal’s internal representation of
location, and the operation of this mechanism seems to be consis-
tent with the relevant existing data from place cell recording. The
functional architecture of the current model was largely informed
by thinking about imagery and planning in human spatial memory;
however the simulations reported here indicate that it is also able
to explain data at the single-unit level of description.

General Discussion

We have outlined a model of the neural mechanisms underlying
spatial cognition, focusing on long-term and short-term spatial
memory and imagery, egocentric and allocentric representations,
visual and ideothetic information, and the interactions between
them. We proposed specific mechanisms by which long-term
spatial memory results from attractor dynamics within a set of
medial temporal allocentric representations, whereas short-term
memory results from egocentric parietal representations driven by
perception, retrieval, and imagery, and can be investigated by
directed attention. However, perhaps our main novel contribution
is to propose specific mechanisms by which these systems interact.
Thus we propose that encoding and retrieval require translation
between the egocentric and allocentric representations, which oc-
curs via a coordinate transformation in the posterior parietal and
retrosplenial cortices and reflects the current head direction. In our
model, the hippocampus effectively indexes information by real or
imagined location, allowing reconstruction of the set of visual
textures and distances and allocentric directions of landmarks
consistent with being at a single location (see also King et al.,
2004). In turn, Papez’s circuit translates this representation into an
egocentric representation suitable for imagery according to the
direction of view (and also translates from egocentric perception
during encoding of the allocentric representation). For partially
related models, see Becker and Burgess (2001); Burgess, Becker,
et al. (2001); Recce and Harris (1996); and Redish (1999). We
further propose that modulation of the allocentric-to-egocentric
translation by motor efference allows “spatial updating” of ego-
centric parietal representations, which in turn can feedback to
cause updating of the medial temporal representations. Finally, the

generation of mock motor efference (e.g., representing planned eye
movements) in the prefrontal cortex allows mental exploration in
imagery, making a potential contribution to spatial planning. The
temporal coordination of the alternating interaction of the temporal
and parietal regions was assumed to be provided by the theta
rhythm.

For concreteness, and to demonstrate the actual ability of the
theory to bridge between single-neuron and systems neuroscience
and behavioral data, we implemented it as a fully specified neural
network simulation for the case of long-term, hippocampally de-
pendent, spatial memory and its interaction with short-term work-
ing memory and imagery. Our simulations provide straightforward
explanations for a number of experimental results. The first pro-
vides a neural implementation of the idea that representational
neglect results from a damaged egocentric window into an intact
long-term spatial memory system (see also Baddeley & Leiber-
man, 1980). From the model architecture, we are able to suggest
that unilateral lesions to the precuneus, retrosplenial cortex, pari-
etal area 7a, areas connecting 7a or the retrosplenial cortex with the
parahippocampal gyrus, or combinations of these areas have the
potential to generate representational neglect. However, currently
available patient data makes this prediction difficult to test. The
second simulation provides a neural implementation of self-
motion-related spatial updating of object locations in memory and
of imagined navigation and route planning. The third shows that
our interpretation of the role of head direction in memory is
consistent with the effects of lesions to the head direction system
on single-unit responses in the hippocampus. With this interpreta-
tion, we are also able to make two simple predictions about the
outcomes of similar experiments, thus allowing the translation
component of our model to be tested directly. The final simulation
shows that our proposed mechanism for integrating sensory infor-
mation and self-motion also provides an explanation for single-
unit responses in situations of conflicting sensory and ideothetic
information (Gothard et al. 1996). In the following, we discuss the
implications, predictions, and limitations of the model with respect
to the wider literature on the neural bases of spatial cognition and
memory more generally.

Temporal—Parietal Interactions, Planning, and Imagery

Our specific model of the temporal—parietal interaction has
some straightforward implications for functional anatomy. Thus, it
explains why Papez’s (mammillar—anterior—thalamic—medial—
temporal) circuit is required for episodic recollection into rich
visuospatial imagery (Aggleton & Brown, 1999) and also provides
the head direction signal in rats (Taube, 1998). It also suggests a
functional role for the retrosplenial cortex and the intraparietal
sulcus, which are well positioned to integrate or buffer the trans-
lation between egocentric and allocentric representations (Burgess,
Becker, et al., 2001) or, correspondingly, between path-integrative
and mnemonic information (Cooper & Mizumori, 2001). Cooper
and Mizumori (2001) and Maguire (2001) have provided evidence
that lesions to the retrosplenial cortex, an area interconnected with
the parietal and medial temporal regions (Kobayashi & Amaral,
2003; Wyss & Groen, 1992), do indeed impair the navigation of
rats and humans under such circumstances. In humans, the inti-
mate link between spatial imagery and navigation is made clear by
the correlation of impairments in these two faculties following
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unilateral damage (Guariglia et al., 2005). Finally, our model
proposes a role for the theta rhythm in coordinating the flow of
information between medial temporal and parietal components of
the model. Thus, top-down activation from medial temporal to
parietal areas occurs at one phase of theta, whereas bottom-up
activation from parietal to medial temporal areas occurs at the
opposite phase of theta. A related proposal relates hippocampal
encoding and retrieval to opposing phases of theta (e.g., Hasselmo
et al.,, 2002), corresponding to our bottom-up and top-down
phases, respectively. In our model, spatial updating occurs over
repeated top-down and bottom-up cycles, as each (top-down)
translation from allocentric to egocentric representations maps to
locations adjusted for the subject’s velocity and then passes
(bottom-up) back to update the allocentric representation.

In order to plan routes through complex environments, the brain
must make use of long-term memories of the layout of those
environments. Route planning also requires the ability to perform
mental navigation: to imagine both moving in a given direction
and the consequences of that action. Thus the task in our second set
of simulations, involving mentally generating a velocity signal or
“mock motor efference,” could be viewed as mental exploration of
a familiar environment. This exploration would be useful for path
planning and many other tasks. For example, this may be how
people accomplish the task of Wang and Brockmole (2003). Recall
that in this task subjects were led along a path through a familiar
environment and asked to point to occluded landmarks at various
predetermined times. It was found that when subjects could not
accurately point to a given landmark, they often could do so if
allowed to walk to some point further along the path from which
the landmark was still occluded. Within the framework of our
model, subjects may have been mentally navigating from their
current location to a location from which the occluded landmark
was visible. By integrating the direction of the mentally generated
velocity signal, a pointing direction could be generated. However,
if the mental path was too long or complex, then the calculation
would be swamped by cumulative error. In physically moving
further along the path, subjects may have been simplifying the task
by reducing the amount of mental navigation required.

Within the framework of route planning, a final prediction of the
model presented here is that damage to connections between
parietal and medial temporal cortices would impair the ability of
an organism to navigate to occluded landmarks in familiar envi-
ronments. This is because, without access to long-term spatial
memory, the parietally supported egocentric window would only
have access to short-term memory and direct sensory information,
rendering the organism unable to mentally explore the familiar
environment beyond regions very recently encountered. Equally,
we might expect to see increased theta coherence between tempo-
ral and parietal regions as a function of this type of actual, or
mental, navigation.

Differences Between Spatial Updating and Path
Integration in the Temporal and Parietal Cortices

Path integration can be defined as the ability of an organism to
keep track of its current location, on the basis of idiothetic infor-
mation alone, relative to its starting point as it moves around,
whereas spatial updating refers to the ability to also keep track of
other locations, again on the basis of idiothetic information alone,

within the environment (see, e.g., Etienne et al., 1998; Loomis et
al., 1993; Mittelstaedt & Mittelstaedt, 2001; Morrongiello, Tim-
ney, Humphrey, Anderson, & Skory, 1995). However, either pro-
cess could operate by individually updating the required egocentric
location(s) relative to the organism or by updating an allocentric
representation of the organism’s location relative to the environ-
ment. Both types of updating are probably available in parallel,
with the former suitable for small numbers of locations and short
movements and the latter for updating multiple locations and
longer movements, when perceptual support from the environment
is unavailable. Thus spatial updating over short timescales and
small movements (e.g., less than 135° rotation) in unfamiliar
environments appears to operate on transient egocentric parietal
representations, showing independent accumulations of errors in
the locations of different objects (Waller & Hodgson, 2006; Wang
& Spelke, 2000). In contrast, spatial updating over longer dura-
tions or movements or in very familiar environments appears to
operate on a coarser but enduring allocentric representation (Mou,
McNamara, Rump, & Xiao, 2006; Waller & Hodgson, 2006). See
Burgess (2006) for further discussion.

Corresponding to these two types of spatial updating, separate
models have been proposed for the mechanisms within each (tem-
poral or parietal) region. Byrne and Becker (2004) proposed a
purely parietal mechanism for motion-related updating of the
egocentric locations in the parietal window, which would be con-
sistent with single-unit recording and effects of lesions within this
region (see the present introductory section). On the other hand,
strictly medial temporal mechanisms have been proposed for up-
dating the location of the subject relative to the environment (see,
e.g., Howard, Fotedar, Datey, & Hasselmo, 2005; O’Keefe &
Nadel, 1978; Redish, Rosenzweig, Bohanick, McNaughton, &
Barnes, 2000; Samsonovich & McNaughton, 1997). These latter
models are supported by the recently discovered “grid cells” in the
entorhinal cortex (Hafting et al., 2005), which appear well suited
to this task, with the hippocampus potentially required when path
integration has to be tied to environmental locations (O’Keefe &
Burgess, 2005; McNaughton et al., 2006). See Whishaw and
Brooks (1999) and Save, Guazzelli, and Poucet (2001) for related
discussion of the hippocampal contribution to path integration.

Our model primarily concerns the interaction of parietal and
medial temporal representations and assumes a single spatial up-
dating mechanism derived as an extension of this interaction. Our
second set of simulations provides a detailed mechanism by which
the parietal cortex might make use of stored spatial representations
in the medial temporal lobe to provide egocentric representations
of an arbitrary number of locations within a familiar environment
and to update these locations following real or imagined self
motion. Other tasks (such as pointing to a recently seen object or
imagery for objects or actions as opposed to environmental layout)
will be purely parietal and are not addressed by our model. Even
within tasks that depend on both regions, such as those simulated,
our model will not capture the finer distinctions between spatial
updating driven more strongly by one region than the other.
Similarly, we do not distinguish the processing of discrete objects,
likely more strongly represented in parietal areas, from the pro-
cessing of extended boundaries, likely key to driving the hip-
pocampal representation. The BVC representation used provides
the appropriate dependence of hippocampal representations on
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environmental geometry but probably does not correspond so well
to some aspects of egocentric parietal representations.

The provenance of the model. We have presented a working
model of spatial cognition without really addressing how the brain
might have “learned” such a solution. Although a number of
models of hippocampal learning have been presented (see, e.g.,
Becker, 2005), principles underlying the learning of egocentric—
allocentric transformations have not been firmly established. In
recent work, we have attempted to elucidate more biologically
realistic principles upon which such learning could be based (By-
rme & Becker, 2006). Specifically, we have proposed two rela-
tively simple learning principles that, when applied to a transfor-
mation circuit similar to the one presented here, reliably result in
the generation of allocentric representations of space. The first
principle is that of minimum reconstruction error. That is, for a
given heading direction, the representation produced at the medial
temporal lobe level should, through top-down connections, be able
to reproduce the corresponding egocentric input. The second prin-
ciple is the maximization of temporal inertia in medial temporal
representations. This is motivated by empirical evidence that both
hippocampal pyramidal cells (Redish, McNaughton, & Barnes,
2000) and, under certain circumstances, superficial (Klink &
Alonso, 1997) and deep layer (Egorov, Hamam, Fransén, Has-
selmo, & Alonso, 2002) entorhinal cells exhibit a resistance to
rapid changes in firing rate. We speculate that spatial representa-
tions that vary as little as possible in time should maximize
accuracy and precision in storage, as well as allowing more rapid
spatial updating or mental exploration, because the medial tempo-
ral representations would have to vary less rapidly to keep up with
the retrieval demands. We have tested the utility of these learning
principles in two very different models, one trained by direct
minimization of a cost function by using steepest descent learning
and one consisting of a coupled network of restricted Boltzmann
machines trained sequentially by contrastive Hebbian learning
(Hinton, 2002; Hinton et al., 2006). Both models were able to learn
allocentric representations of space at the medial temporal lobe
output layer and to generate good reconstructions of the egocentric
input layer.

Implications beyond spatial memory. Although we have con-
centrated on the role of the hippocampus in spatial memory, this
structure is also known to be important in the maintenance of more
general episodic memories (for recent reviews, see, e.g., Becker,
2005; Burgess et al., 2002; Eichenbaum, 2001; for models see
Howard et al., 2005; Marr, 1971; McClelland, McNaughton, &
O’Reilly, 1995; McNaughton & Morris, 1987; Treves & Rolls,
1992). In our model, hippocampal place cells bind the outputs of
various BVCs and visual feature units together to form an allo-
centric map of an environment. The attractor dynamics of the
medial temporal system then performs retrieval by allowing only
those conjunctions of visual feature, distance, and allocentric di-
rection that are consistent with being in a single location (repre-
sented in the hippocampus). This information is then rotated, with
the aid of Papez’s circuit, to form an egocentric parietal image for
conscious inspection that corresponds to a specific direction of
view. Our model is highly consistent with the pattern of fMRI
activation in retrieving the spatial context of an event (Burgess,
Maguire, et al., 2001; King, Hartley, Spiers, Maguire, & Burgess,
2005). Having defined this functional anatomy in the context of
spatial memory, we suspect similar processing occurs much more

generally during any detailed mental imagery for environmental
layouts derived from long-term knowledge. This would be consis-
tent with reports of deficits in detailed imagery for novel or future
events in amnesic patients (Hassabis, Kumaran, Vann, & Maguire,
2006; Klein, Loftus, & Khilstrom, 2002; but see also Bayley, Gold,
Hopkins, & Squire, 2005) and similar patterns of activation for
thinking about past and future events (Addis, Wong, & Schacter,
2006; Okuda et al., 2003). This function might relate to charac-
terizations of episodic or autobiographical memory in terms of
retrieval of rich contextual information or feelings of “reexperi-
encing,” as distinct from the imagery for simple objects and
actions which is preserved in amnesia (e.g., Rosenbaum, McKin-
non, Levine, & Moscovitch, 2004).

For simplicity, our simulations concerned a single familiar en-
vironment. However, retrieval from the best matching of several
familiar environments could be mediated, as described by our
model, by distinct subsets of place cells (McNaughton & Morris,
1987; Samsonovich & McNaughton, 1997), providing a distinct
attractor representation of each environment (Wills et al., 2005). In
this way, the hippocampus might be described as providing the
spatial context appropriate to recollection (O’Keefe & Nadel,
1978), explaining its role, for example, in context-dependent fear
conditioning but not in fear conditioning itself (Kim & Fanselow,
1992; Phillips & LeDoux, 1992). An interesting prediction here is
that two situations can be identified as having different “contexts”
requiring hippocampal disambiguation, that is if they elicit
“remapped” (Muller, 1996) patterns of place cell firing as occurs
rapidly with dramatic multimodal changes (Wills et al., 2005) or
more slowly with unimodal changes (Lever et al., 2002).

Of course, hippocampal neurons are probably not limited to the
spatial functions we have focused on here. For example, rat CA1
and CA3 pyramidal neurons can also respond to various nonspatial
cues (see, e.g., Huxter, Burgess, & O’Keefe, 2003; Young, Fox, &
Eichenbaum, 1994). This ability to connect nonspatial and spatial
information may allow the association of location within an envi-
ronment to various other elements of experience, that is providing
a spatial-temporal context to support context-dependent episodic
memory more generally (see, e.g., chaps. 14 and 15 in O’Keefe &
Nadel, 1978). We also note that the ability to perform spatial
updating of the imagined viewpoint may both aid the process of
search during episodic retrieval and the binding of places into
remembered trajectories, or sequences, in memory for more ex-
tended dynamic episodes (see also Howard et al., 2005; Jensen &
Lisman, 1996; W. Levy, 1996; Wallenstein, Eichenbaum, & Has-
selmo, 1998). Howard et al.’s (2005) temporal context model
(TCM) of memory for lists of items provides an example of how
such associations across time might occur. The TCM works by
associating items to a slowly varying context representation con-
taining history-dependent information relating to the items them-
selves. Howard et al. noted that this model is broadly compatible
with a spatial function for the medial temporal lobe in providing a
mechanism for path integration by representing the recent history
of movements. In our model, the medial temporal lobe could be
thought of as providing the spatial context of events by represent-
ing the actual surrounding spatial scene. Generation of more gen-
eral representations of context, such as temporal contexts, would
be one way in which our model might be extended to include the
involvement of the medial temporal lobe in memories for trajec-
tories through space or in nonspatial memory.
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Finally, although we have concentrated on spatial memory, the
question of how long-term memory and short-term or working
memory interact is equally pertinent to nonspatial memory. For
example, although much has been learned about both long-term
and working memory for verbal stimuli, the interaction of these
two systems is a topic of much current interest (e.g., Baddeley,
2000; Burgess & Hitch, 2005). By staying within the spatial
domain, where there is much data at the single-unit level, we have
provided a detailed model of one form of the interaction between
long-term medial temporal and short-term parietal systems. How-
ever, our proposals for the functional roles and interactions of the
regions in question should generalize to the generation of dynamic
visuospatial imagery from stored verbal knowledge. Given the
slight lateralization of visuospatial processing to the right hemi-
sphere (e.g., Piggott & Milner, 1993; Smith & Milner, 1989;
reviewed in Burgess et al., 2002), we would hope that some of the
mechanisms considered here might generalize to the interaction of
left medial temporal lobe long-term memory systems for narrative
memory (e.g., Frisk & Milner, 1990) and parietal short-term mem-
ory systems for verbal working memory.
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Appendix

Implementation of the Model

Mathematical Details

In presenting the mathematical details of the training procedure
for the model, each component (medial temporal, transformation,
etc.) is considered separately. Following this, the dynamical equa-
tions governing the model’s behavior during simulation are pre-
sented.

Medial Temporal Component

Before the model was trained on a particular environment, the
landmarks/boundaries of that environment were discretized by
overlaying them on a Cartesian grid with a linear dimension of
approximately 3 grid points/unit length. Any grid point that fell
within half a lattice spacing of a boundary was then marked as a
landmark segment. This set of landmark segments, examples of
which have been presented in Figures 3 and 4 in text, constituted
the training data for the current environment. Training proceeded
with the model being positioned at random locations within the
environment, while, at each location, attention was sequentially
directed to each landmark segment that was potentially viewable
from that location. For each of these attending events at each
location, appropriate firing rates were imposed on all neurons in
the medial temporal layers, and connection strengths between
neurons were incremented via a Hebbian learning rule. The pro-
cedure for calculating the firing rates during the training phase are
now considered.

For the hippocampal layer, a one-to-one correspondence was
established between the model neurons and the points on a Car-
tesian grid, such that each neuron fired maximally at its preferred
location. The grid points were spaced with linear density of 2 grid
points/unit length covering the relevant allocentric space for each
of the environments simulated (see Figure 2 in text for an exam-
ple). When the model was located at the location with coordinates
(x, y), the firing rate of the /™ hippocampal neuron was calculated
via

(xi=x)2 + (yi—y)?

Ri=e—"0o52 (A1)

i

where (x,y;) are the coordinates of that neuron’s preferred location.
Next, for the BVC layer, a one-to-one correspondence between the
set of BVCs and a radial grid centered at the model’s current
location and covering allocentric space (see Figure 4) was formed.
For all environments, this grid had a radial resolution of 1 grid
point/unit length to a maximum of 16 units and an angular reso-
lution of 51/27 grid points/rad. The contribution of a landmark
segment with allocentric coordinates (r,6) to the firing rate of the
i™ BVC neuron was calculated via

1 9:"79” 2 ri—r 2
S

where (r,0¢) are the allocentric coordinates of that neuron’s cor-
responding grid point, and o, and o, are chosen to have values of
(0.005)"2 and (0.1)"2, respectively. The total firing rate of the i
BVC neuron was obtained by summing Equation A2 to a maxi-

mum value of 1 over all landmark segments viewable from the
current location. The particular values chosen for o and o, allow
for reasonable spatial resolution with the model architecture; how-
ever, the exact values of these parameters are not critical. In fact,
with a sufficiently high number of neurons covering space, the
only constraint on these values would be the desired spatial reso-
lution of the model. It should be noted that the above definition of
BVCs simplifies that of Hartley et al. (2000) and O’Keefe and
Burgess (1996), for which the sharpness of the distance tuning
decreased with the preferred distance, r;, of the cell. However, a
similar effect of increased influence for nearby versus distant
boundaries is achieved through the increased angle subtended by a
nearby boundary, which therefore controls the firing of a larger
proportion of the BVC population (see Barry et al., 2006). Finally,
boundary/landmark identity neurons were modeled by associating
each perirhinal neuron with an environmental landmark identity.
Thus, the firing rate of the i perirhinal neuron is given by

R?R = Cpr

if i is the index of the attended landmark

1
X { 0 otherwise » (A3)

where Cpy is set to 1.

Once firing rates for a given training step (attending event) were
imposed upon all medial temporal layers, the model weights were
updated via the Hebbian learning rule

WP (14 1) = WP () + R (0 RP (o), (A4)

where o and B are layer labels chosen from {BVC,H,PR}, and
W P(1) is the weight connecting the /" neuron in layer B to the i
neuron in layer o at training step t. After the completion of the
training session, each neuron’s vector of incoming weights from
each other layer was normalized to sum to unity. Each hippocam-
pal neuron’s vector of incoming weights on recurrent connections
was normalized by dividing by its maximum incoming recurrent
weight. Note that no learning rate parameter was required in
Equation A4 because of the weight normalization after learning.

Parietal Component

The parietal component of the model, including the parietal
window, the transformation layer, the head direction system, and
the connections within/between these regions and from/to the BVC
layer, was trained separately from the medial temporal component
because the former needed training only once. For each training
step a heading direction, ¢, was randomly chosen from the set of
heading directions, {2mi/20}!2,, corresponding to the set of trans-
formation sublayers. Next, a linear boundary of random location
and orientation in allocentric space was discretized in the same
way as landmark boundaries were in the medial temporal training
procedure described above. The length of this linear boundary was
chosen proportional to the distance between its midpoint and the
allocentric origin in order to sample sparsely distributed neurons
distant from the origin as frequently as densely distributed neurons
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near the origin. BVC firing rates were then calculated for the
discretized boundary by using Equation A2 and were identically
imposed on the BVC layer and the transformation sublayer corre-
sponding to the randomly chosen rotation angle, ¢. By rotating the
linear boundary through ¢ about the allocentric origin, the ego-
centric positions of the individual landmark segments for this
boundary were then found. As with the BVC layer, firing rates of
the parietal window neurons in the presence of the boundary were
found by first forming a one-to-one correspondence between the
set of parietal window neurons and a radial grid centered at the
model’s current location and covering egocentric space (see Fig-
ure 3 in text). The contribution of a single landmark segment with
egocentric coordinates (r,0°) to the firing rate of the i™ such neuron
was calculated via

L I )
R =—"e\a)e (o), (A5)

where (r;,6¢) are the egocentric coordinates of that neuron’s cor-
responding grid point, Cpy, is set to 1, and o, and o, are chosen as
in Equation A2. The total firing rate of the i™ parietal window
neuron was calculated by summing Equation A5 to a maximum
value of 1 over all landmark segments viewable from the current
location. Finally, the head direction layer is a one-dimensional
continuous attractor (e.g., Skaggs et al., 1995; Stringer, Trappen-
berg, et al., 2002; Zhang, 1996) composed of 100 neurons uni-
formly covering 360° of angular head direction space, with the
firing rate of the /™ such neuron calculated via

(i~
R = C ypesss?, (A6)
where ¢, is the preferred heading direction of that neuron and
where Cyp is set to 1.

Once firing rates were imposed on each layer for a given head
direction and linear boundary, all connection weights were incre-
mented according to Equation A4. After 400,000 such training
iterations, the vector of incoming weights for each parietal neuron
from each other layer was normalized to sum to unity. Weights
from the transformation layer to the parietal window were clipped
so that the smallest 30% were set to zero. This was done so that the
weight matrices became sparse, a manipulation that decreased
required simulation time considerably. For normalization pur-
poses, all transformation sublayers were taken as part of the same
layer. The vector of weights on incoming recurrent connections for
each head direction neuron was normalized by dividing by the
maximum incident weight value for that neuron. Although all
weights in the parietal component of the model were trained on a
discrete set of 20 transformation angles, the model was found to
interpolate accurately between these values.

Velocity Integration

In order to maintain a localized packet of self-sustaining activity,
the head direction system must have a set of recurrent excitatory
connections, each originating from a particular head direction cell
representing and terminating on another cell that represents a nearby
or equal direction. Overall, connections from any given head direction

cell must be balanced in such a way that that cell’s activity equally
excites neurons representing directions to either side of the current
direction. The training procedure described in the previous section
results in the formation of just such a set of weights. An applied
angular velocity signal can move an activity bump around in this
network in a continuous fashion by modulating an appropriately
formed second set of self-excitatory connections (Zhang, 1996). Any
connection in this set also originates from a cell representing a
particular direction and terminates on another cell that represents a
nearby direction, but these “rotational” connections are asymmetric so
that activity in the presynaptic head direction cell preferentially ex-
cites cells corresponding to nearby directions that are to one side of
the current direction. In principle, the angular velocity of the shift is
proportional to the size of the asymmetric component (Zhang, 1996);
however, for simplicity, we simulate rotations of fixed velocity, with
an angular velocity signal that simply gates the use of a fixed set of
“rotational” connections in either sense (clockwise or counterclock-
wise). We achieved such a weight distribution by moving a bump of
activity around the head direction neurons at a constant velocity in
order to simulate rotational egomotion. During this simulated rotation,
the velocity-gated weights on recurrent connections within the head
direction layer were updated by the trace Hebbian learning rule given
by

WP (1 + 1) = W ™(0) + R (DR™ (1), (A7)

where W ""P(1) is the velocity-gated weight from the j" to the i*"
head direction neuron at training step #, where R IHD (7 is given by

100
R (1) = > e ™Rt — (k — 1) A, (A8)

k=1

and where A7 = 0.05 time units. After training, the velocity-gated
head direction weights were normalized in the same way as the
nonvelocity-gated recurrent head direction weights. A similar
model of the head direction cell ensemble has been described in
detail by Stringer, Trappenberg, et al. (2002).

Translation, which can occur in parallel with rotation in our
model, is accomplished by introducing a second set of velocity-
gated “translational” weights from the transformation sublayers to
the parietal window. The original “static” set of weights is respon-
sible for projecting a rotated image of BVC activity onto the
parietal window during top-down phases and becomes inactive
during translational motion. Instead, the translational set of
weights projects a similar rotated image onto parietal window
neurons, but it is displaced by a small amount in egocentric space.
This is accomplished by setting the translational weights as

(,xzfxf)z + (_v: *yf +1.5)2

TR, _ L T PWITR,
W;X = E e o ()2 Wy, (A9)
k

where (x{,y)) = (ricos6;,rsin6f) are the maximal firing coordi-
nates of the /™ parietal window neuron in the egocentric map, and
W% is the static weight connecting the /™ neuron in the n™
transformation sublayer and the k™ neuron in the parietal window
layer. Although o in this equation could be set to a constant, we

(Appendix continues)
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found that with our limited resolution for landmark representation
at larger distances, a more practical form was given by

o (r)=0.45 10g<1 + %) (A10)

Because feedback connections propagate the displaced parietal
window activity resulting from the up-regulated weights of Equa-
tion A9 back to the place cell layer during bottom-up phases, BVC
and place cell firing shifts to reflect the new parietal window
activity. This, in turn, results in a further shifting of the activity
projected back onto the parietal window in the next top-down
phase. Thus, translation of both the egocentric and allocentric
representations of space continues until the velocity signal is
removed and the original static weights are up-regulated again. As
with the rotational connections, we simulate only a single speed of
motion. A more complete model might simulate different speeds of
translation by using a number of different sets of connections from
the transformation layer to the parietal window, each correspond-
ing to a slightly different displacement, and each gated by separate
signals for the corresponding speeds. Alternatively, it might titrate
the influence of static and translational weights according to speed
of movement. However, because of their intense computational
requirements, we have not explored these more detailed models
here.

Dynamics

During simulations, all neurons in our model were of the “leaky-
integrator” variety and all dynamical equations were integrated by
using the simple Euler method with a time step of 0.05 units. For
the medial temporal part of the model (perirhinal, BVC, and
hippocampal), we have

AT _ AS — % 1-R"
e bin

+ By WHH - RF > xB(1)p*P WP - RP

BFa

+ Su’BVCd)BVC,TR EXBVC,TR”(U WBVC,TRn . RTR" + Sa‘PR IPR, (Al 1)

n

where A“ is the activation vector for layer a; WP is the weight
matrix connecting layer B to layer a; G is a scalar, representing
the overall strength of the connection from layer  to layer «; & is
the Kronecker delta function (unity for equal arguments, zero
otherwise); ¢f,, represents an inhibitory bath of interneurons to
which all neurons in a given layer are reciprocally connected with
equal weight; lisa square matrix with all elements equal to one;
and I'® is an externally applied source of input (see below)

representing direct lower level input into the perirhinal layer.
Bottom-up/top-down dynamics are governed by the x functions, of
which x™F(#) and x®V¢™(f) are 1 during a bottom-up phase and
0.05 during a top-down phase, x*"(#) is 1 during a top-down phase
and 0.05 during a bottom-up phase, and the remaining xs in
Equation A1l are always 1. The length of each of the bottom-up/
top-down phases is 15 time units. Finally, the firing rate of the i
neuron in layer « is given by a sigmoid function of its activation,
as follows

1
R = T ap (=020 — vy

(A12)

where v* acts as a threshold. Exact numerical values for all
unspecified parameters are presented in Table 1.

The dynamics of the parietal window and head direction layers
are given by Equation A13 (see below) and

dAHD
dt

— _ AHD _ d)HEi . RHD

+ GHD WHDHD L RHD 4§ o X HD yyw x HD , RHD 4 JHD
(A14)

respectively, whereas the dynamics of the /™ neuron in the n'
transformation sublayer are given by

dA™

— — A TR _ n; i R TR 4 ¢TR‘HD W TR HD | R HD
dt mn

_ ¢ TRIIR! 4 z X TR,rx([)d) TR Py TR e, R,

«E{BVC,PW}

(A15)

where W "™ and W “*HP are the “translational” transformation
layer to parietal window weights and the “rotational” recurrent
head direction weights respectively, where x ™*(f) is 1 for
o = BVC during a top-down phase or for « =PW during a
bottom-up phase, and 0.05 otherwise, and where 1 is a vector of
ones. Finally, the dynamics of the inhibitory interneuron are given
by

1
di: — A"+ $MP 1R P, (A16)
dt

Parameters in the model were chosen so that the fourth term on
the right-hand side of Equation A15 was a constant for all head
direction cell activity packets maintained in our simulations by
either attractor dynamics or injected current. This constant was
equal to the maximum value of W TP Therefore, the fourth
term on the right-hand side of Equation A15 could have been
eliminated by simply subtracting a constant from W ™" g0 that
their maximum value was zero. With such a simplification, the
model could be interpreted as having only inhibitory direct con-

dAPW

dt 0

APV _ rﬂ\x 1-R?Y + E[avﬁoffd)PW,TR WPV TR, 4 avyond)vXTR" WYXTR.RTRr - [PW during top-down

(A13)
during bottom-up



A NEURAL MODEL OF SPATIAL MEMORY 375

nections from head direction to the transformation layer, without
any inhibitory interneurons. Note also that all neurons in the model
interact with their connected neighbors in an identical fashion.
Apparent differences in the form of the above dynamical equations
are superficial and reflect the fact that the various network layers
have unique patterns of connectivity with their neighbors.

In addition to calculating neuronal firing rates for training
purposes, Equations A3, AS, and A6 were also used to calculate
the cuing/sensory or mentally generated inputs Ipg, Ipw, and Iyp.
For this purpose, Cpr, Cpw, Cup, 0y and o, were set to 60, 60, 40,
(0.01)"2, and (0.1)"?, respectively. When the weak BVC termi-
nating weights were used in Simulation 4, Cpy was increased to
100 during calculation of sensory input. Again, the exact values of
the listed parameters were not critical but were found to generate
localization quickly. In fact, a relatively wide range of parameter
values would have produced qualitatively similar results.

Finally, after the model has been cued to “imagine” itself in a
certain location and orientation, or during mental exploration/
spatial updating, attention can be directed in any egocentric direc-
tion in order to identify surrounding landmarks. To simulate fo-
cused attention in the direction, {5, an input given by

Oy

PW _ -
I;™ = Copye ol

(A17)

was applied directly to neurons in the parietal window layer, where
o, was set to \/§ for all attending events, except during the
identification of Building 1 in Simulation 1. In the latter case, an
increased value of \/AG was used for o, (this stronger attention
signal would have resulted in the correct identification of the
remaining buildings as well and would not have affected any of the
results presented here). The value Cpy was set to 40 for our
simulations.

Simulation of Head Direction Cell Lesions

Input from the head direction cell system to transformation
neurons was recorded for all head directions by storing the com-

bined value of the third and fourth terms of the right side of
Equation A15 in a vector, Iyp..(¢d). Each element of this vector
corresponds to one transformation layer neuron and is a function of
the head direction, ¢. Thus, the third and fourth terms of the right
side of Equation Al15 could be replaced by Iyp..(¢d) during
simulation. For a given value of &, all values of Ijjp,...(¢p) are less
than or equal to zero, with only elements corresponding to trans-
formation layer neurons in the “selected” sublayer being close to
zero. All other values are strongly negative, reflecting the gating
function of the head direction system.

In order to simulate a head direction cell lesion for a “realistic”
model in which inhibition for gating is accomplished via a large
population of inhibitory interneurons, a two-part modification of
Lip.. was used. First, all values of Iy, greater than a cut-off of
33% larger than the minimum value were set to the cut-off (the
average minimum value was —96, so the cut-off was —64). This
modification was intended to simulate the loss of direct excitation
to the “selected” transformation sublayer. Second, random regions
of each transformation sublayer were selected (see below) and the
Lijp,.. elements corresponding to those neurons were increased in
value to the level of the cut-off. The exact random transformation
layer regions selected for this manipulation varied with head
direction. This modification was intended to simulate the loss of
inhibition resulting from lowered levels of stimulation to the
inhibitory neuron population.

In selecting random regions of the transformation layer for
reduced inhibition, a one-to-one correspondence between the neu-
rons in each transformation sublayer and a radial grid was formed
(as described earlier in the training section). A circle with ran-
domly located center and a radius of 7.5 units was formed for each
sublayer and all neurons corresponding to grid points within the
circle were selected for reduced inhibition. These circular regions
were randomly reselected for each head direction.
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