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Abstract

Various lines of evidence indicate that animals process spatial information regarding object
locations differently from spatial information regarding environmental boundaries/landmarks.
Following Wang and Spelke’s (2002) observation that spatial updating of egocentric representa-
tions appears to lie at the heart of many navigational tasks in many species including humans,
we postulate a neural circuit which can support this computation in parietal cortex, assuming
egocentric representations of multiple objects can be maintained in prefrontal cortex in spatial
working memory (not simulated here). Our method is a generalization of an earlier model by
Droulez and Berthoz (1991), with extensions to support observer rotation. We can thereby
simulate perspective transformation of working memory representations of object coordinates
based upon an egomotion signal presumed to be generated via mental navigation. This bio-
logically plausible transformation would allow a subject to recall the locations of previously
viewed objects from novel viewpoints reached via imagined, discontinuous, or disoriented dis-
placement. Finally, we discuss how this model can account for a wide range of experimental
findings regarding memory for object locations, and we present several predictions made by the

model.



1 Introduction

Spatial reasoning is of paramount importance in nearly all aspects of human behaviour, from
planning and navigating a complex route through some environment in order to reach a relevant
goal, to simply grasping a nearby object. The set of all entities which comprise our spatial
surroundings may be divided into subsets in arbitrarily many ways. For the present purposes,
we will partition these entities into environmental boundaries/landmarks and objects. There
is substantial empirical evidence as to how the brain represents and processes the former; for
a review, see Burgess, Becker, King & O’Keefe (2001). For example, O’Keefe & Dostrovsky
(1971) found neurons in the hippocampus of the rat which respond to the rat’s location in
space. O’Keefe & Nadel (1978) argue that this collection of “place cells” forms a cognitive
map and is the rat’s internal allocentric map of the environment. Evidence of view-invariant
hippocampal place cells has also been found in non-human primates (Ono et al., 1993) and in
human hippocampus (Ekstrom et al., 2003).

For the case of short-term object location representation, the focus of this paper, empirical
evidence strongly indicates involvement of the posterior parietal cortex. For example, Sabes,
Breznen & Andersen (2002) perform single unit recordings which demonstrate that area LIP
of monkey cortex encodes saccade targets in retinotopic coordinates. More generally, Colby &
Goldberg (1999) review evidence showing that object locations are represented in a variety of
reference frames in parietal cortex, while Andersen, Shenoy, Snyder, Bradley & Crowell (1999)
review evidence suggesting that area 7a incorporates vestibular information to maintain local-
ization of visual stimuli in a world-centered reference frame. Finally, Goodale & Milner (1992)
review data suggesting that the dorsal stream from striate to posterior parietal cortex is re-
sponsible for the relatively short time-scale sensorimotor transformations used while performing
visually guided actions directed at objects in the environment.

In this paper we first review empirical evidence from neuropsychological and electrophysio-

logical studies as to the nature and locus of object representations in the brain. We then present



a biologically plausible computational model which allows for the transformation of object coor-
dinates maintained in spatial working memory (WM). The function of this transformation is to
update WM representations of object coordinates in egocentric space while the subject mentally
navigates through their environment. This transformation is driven by the products of mental
navigation (presumably some mentally generated equivalent to vestibular, proprioceptive and
motor efference information). Next, we perform simulations which demonstrate the functioning
of the model and how error is introduced into object coordinate representations by the model.
Finally, we discuss how the model can account for various experimental findings.

The representation of object location information in the brain appears, at least under cer-
tain circumstances, to be quite different from the representation of environmental boundary
information. A series of experiments performed by Wang & Spelke (2000) provides insight into
how humans differentially process object location and environmental boundary information. For
each experiment, the authors placed a few objects around a small room. Subjects were allowed
to explore the room and studied objects’ locations for as long as they pleased. They were then
brought to the center of the room, blindfolded, rotated by a small amount and asked to point
to the various objects as they were called out in a random order by the experimenters. Fol-
lowing this, subjects were required to sit in a swivel chair fixed at the center of the room and
disorient themselves via a 1 minute self-induced rotation. They were again asked to point to the
objects in a predetermined random order. In addition to objects, subjects were also required to
point to room corners in some experiments. The main findings can be summarized as follows:
After the initial rotation (without disorientation), subjects could point to objects and room
corners with relatively high accuracy, implying that they had encoded correctly the information
which they were asked to. After disorientation, subjects could no longer accurately point to
the location of objects or room corners. However, analyses of the consistency of the pointing
errors indicated that the relative configuration of the room corners could be accurately recalled
(for non-rectangular as well as rectangular rooms), whereas the relative object configuration

could not be. This supports a configural representation of geometric feature locations, and
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non-configural or independent representations of object locations. Furthermore, when subjects
were reoriented with a bright light (still blindfolded), they could accurately recall the absolute
and relative locations of room corners, but neither the relative nor absolute locations of objects.
On the other hand, when the bright light was left on throughout the disorientation procedure,
subjects could recall the relative and absolute locations of both objects and room corners.

The results of the Wang & Spelke (2000) experiments indicate that subjects could rapidly
form an accurate internal representation of environmental boundaries and object locations. How-
ever, it appears that during mental transformations of spatial information in trials where the
subject is not continuously oriented, information about a given object location is updated inde-
pendently of information regarding other objects and of the environment. In this way each object
location is subject to independent transformation error. This is in contrast to environmental
geometric cues such as room corners, which appear to be updated as a coherent whole.

Additional evidence that object location information is handled differently than environmen-
tal boundary information comes from an experiment by Shelton & McNamara (2001). Subjects
were brought into a room with various objects placed at different locations inside, and allowed
to observe the objects from various predetermined viewpoints. After leaving the room, they
were asked to imagine standing at a given object facing a second object, and to point to where
a third object is relative to themselves. Subjects performed best when their imagined viewpoint
was aligned with the original viewpoint from which they observed the object configuration.
This suggests the possibility that subjects are storing the object configuration in head-centered
egocentric coordinates, and that they must transform it (introducing error) when they imagine
observing it from other viewpoints. We say head-centered here because subjects were asked to
imagine facing an object, which implies pointing their head towards it; subjects were not asked
to constrain their gaze direction so neither retinal nor body-centered coordinates are implied.
Another possible interpretation of Shelton & McNamara’s results is that subjects form a view-
based snapshot of the entire presentation scene which can be used for later matching. Wang

& Spelke (2002) review evidence that humans do seem to make use of such snapshots, at least
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under certain circumstances. However, we do not investigate this issue any further here.

In order to build a computational model of mental navigation which explains empirical results
such as those of Wang & Spelke (2000) and Shelton & McNamara (2001), we first require a more
complete understanding of how the brain represents objects. We next review empirical evidence

as to the nature and locus of object representations in the brain.

2 Objects and Spatial Working Memory

A number of experiments suggest a transition from short-term spatial WM to long term memory
representations of objects after several minutes of study time (Smith & Milner, 1989; Crane
et al., 1995; Bohbot et al., 1998). The evidence provided by these studies suggests that medial
temporal lobe structures are essential to location memory over periods of several minutes (x4
minutes) or greater, but are less relevant over shorter time scales.

To investigate the nature of short-term object location memory, we consider the evidence
from functional imaging and unit recording studies. In an fMRI experiment performed by
Galati, Lobe, Vallar, Berthoz, Pizzamiglio & LeBihan (2000), subjects were required to report
the location of a vertical bar flashed before them for 150 ms relative to their midsagittal plane.
During this task, several frontal and parietal regions were more active on the location task,
relative to a control color decision involving the same stimuli. Furthermore, Sala, Rimi &
Courtney (2003) presented subjects with a sequence of flashes, and asked them to recall the
location or identity of what was shown (picture of a house or a face) three flashes back. During
location recall, fMRI scans revealed activation in the superior portion of the intra-parietal sulcus
(IPS) and in the superior frontal sulcus, as well as other areas. During identity recall, activation
was found in the inferior and medial frontal gyrus, as well as other areas. These observations
indicate that areas of frontal and parietal cortices are of key importance in generating and
maintaining internal representations of spatial locations, at least for short periods of time. The

role of frontal cortical areas in this process is reviewed by Levy & Goldman-Rakic (2000) who



argue that the principle sulcus (area 46) plays a crucial role in spatial WM and that Walker’s
areas 12 and 45 (the inferior convexivity) play a crucial role in object identity WM. In particular,
a unit recording study by Funahasi, Bruce & Goldman-Rakic (1989) showed that neurons in the
principle sulcus of the monkey appear to code for egocentric spatial locations. Furthermore, a
human study by Oliveri, Turriziani, Carlesimo, Koch, Tomaiuolo, Panella & Caltagirone (2001),
requiring subjects to remember the position of a flash two steps back in a sequence, found
that only when TMS was applied to the dorsolateral prefrontal cortex (DLPFC) was accuracy
affected, although TMS applied to several different brain regions affected reaction times. These
results suggest that egocentric representations of spatial locations are maintained in DLPFC.
Unfortunately, the role of parietal cortical areas in spatial WM is somewhat less clear. It is
known, however, that neurons in areas VIP and LIP of the IPS show receptive fields in head-
centered coordinates (see Burgess, Jeffery & O’Keefe (1999) for an overview). Also, Chaffe &
Goldman-Rakic (1998) showed that when monkeys are required to hold a target location in
memory for a short delay before making a saccade to it, neurons in area 8a (near the principle
sulcus of prefrontal cortex) and in area 7ip (near the IPS) become active and show temporally
varying activation levels over the delay period. Neurons in both regions show spatial selectivity
similar to that found in the principle sulcus of monkeys by Funahasi et al. (1989).

From the above evidence, it seems plausible that object locations are initially represented in
parietal cortex and, if sufficient attention is allocated to them, then their locations and identities
are maintained in WM in DLPFC. In particular, their locations are represented egocentrically
(as Shelton & McNamara’s (2001) work might indicate) in one area of DLPFC, while mainte-
nance of their identities involves a different area of DLPFC consistent with Goldman-Rakic’s
hypothesis that the ventral/dorsal (what/where) distinction persists into the DLPFC. In order
to mentally manipulate the positions of objects stored in WM, it seems reasonable to assume
that a circuit involving areas of the parietal cortex (especially the IPS) would be involved, given
this area’s involvement in spatial WM and its known ability to represent locations in multiple

reference frames. In particular, we hypothesize that object coordinates are maintained in WM
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egocentrically in DLPFC and manipulated and represented more transiently in the vicinity of

the IPS.

3 Model

In this work, we develop a computational account of memory for object locations in the face of
certain types viewer motion, specifically those in which the motion is imagined, or those in which
the subject does not remain continuously oriented throughout. At a minimum, the model should
provide an explanation of Shelton & McNamara’s (2001) finding that subjects more accurately
recall object positions when asked to do so from a viewpoint in which they previously observed
the object configuration, and of Wang & Spelke’s (2000) finding that disoriented subjects cannot
accurately recall object configurations. One possible way in which subjects might perform either
the Shelton & McNamara or the Wang & Spelke task is by mental navigation. In contrast to a
simple mental rotation of the object array, mental navigation involves imagined egomotion. This
entails making mental viewpoint transformations while simultaneously updating WM represen-
tations of egocentric object coordinates. More specifically, subjects could make a WM snapshot
of object locations from a given viewpoint and, when asked to recall object locations from a new
viewpoint, they could mentally navigate from the initial viewpoint to the new viewpoint and
use the same motion signal driving mental navigation to simultaneously drive a transformation
of egocentric object coordinates. In the case of the Wang & Spelke tasks, the new viewpoint
would have to be estimated due to the disorientation procedure. Also, assuming a serial updat-
ing procedure in which the transformation just described must be repeated for each individual
object allows for a possible explanation of the finding that object configurations could not be
accurately recalled after disorientation and that recall errors were not systematic - indicating
lack of a configurational representation. This will be discussed in more detail in the discussion
section.

The present hypothesis requires neural circuits which can represent the environment allo-



centrically, to allow for mental navigation through the environment. Additional circuits are
required to maintain egocentric object coordinates, and transform these coordinates, one object
at a time, based upon the egomotion signal which drives mental navigation. To this end, models
of real navigation based on internal allocentric cognitive maps have been developed for rats
and humans (see Voicu (2003); Burgess, Donnett & O’Keefe (1997), for examples). Given the
evidence that both real and imagined spatial tasks invoke nearly the same cortical circuitry (see
Stippich, Ochmann & Sartor (2002); Ino, Inoue, Kage, Hirose, Kimura & Fukuyama (2002); Mel-
let, Bricogne, Tzourio-Mazoyer, Ghaém, Petit, Zago, Etard, Berthoz, Mazoyer & Denis (2000);
Kreiman, Koch & Fried (2000), for examples), these models of real navigation will be assumed to
be applicable to mental navigation. We now require a neural circuit which performs the object
location transformation.

To begin, we must decide how egocentric object coordinates are to be represented. Thelen,
Schoner, Scheier & Smith (2001) and Compte, Brunel, Goldman-Rakic & Wang (2000) have
created models of spatial WM which hold location as a bump of activity in a topographically
organized neural circuit, in which each neuron represents a location or direction in egocentric
space. Becker & Burgess (2001) model the parietal egocentric map in this way, and similarly
the organism’s location in allocentric space is represented by a Gaussian bump of activity over
an array of hippocampal place cells. Such bump attractor networks have been used by others
in models of hippocampus, as well (Zhang, 1996; Samsonovich & McNaughton, 1997). Here
also it will be assumed that the model contains a ‘main’ layer of neurons, each of which will
be preassigned a unique location on a Cartesian grid covering head-centered egocentric space.
We will represent object location in egocentric space as a Gaussian bump of activity in the
main neuron layer. By definition, the person’s coordinates in this map are the origin and their
orientation will be taken as facing along the positive y-axis. The existence of these ‘main’
layer neurons in parietal cortex is supported by the electrophysiological recordings of Chaffe &
Goldman-Rakic (1998).

In addition to a representation of object locations, our model will be adapted from a model by
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Droulez & Berthoz (1991), which could easily be implemented to handle translational movements
of the observer, but which requires a non-trivial extension to handle rotational motion. To derive
the model, first consider an observer standing at the origin, O, of some reference frame and facing
along the positive y-axis (see figure 1). The position of an object at a point, P, will be denoted
by the vector, rp. If the observer moves by an amount, rr, and rotates by an amount, 8, then
we will call the new egocentric reference frame the primed frame. The position of the object

w.r.t. this new frame is given by
r, =r, —IT. (1)
Reexpressed in terms of cartesian z,y components, this is
i’ +ypd' = (2 — 27) i+ (yp — y1)Js )

where i and j are basis vectors oriented along the z and y axes, respectively. Making an

appropriate change of basis on the right hand side yields

z, = (zp—2r)cost+ (yp —yr)sinb

Y, = (Yp—yr)cosd — (x, —x7)sinb. (3)

Next, we assume that the observer’s viewpoint shift occurs over a time interval, At << 1, so
that they are standing at O facing in the j direction at time t, and at O’ facing in the j' direction
at time ¢ + At. Assuming that egocentric velocities vary smoothly enough so that for any time,

t' € [t,t + At], we can write

v (t) = v+ fu.(t),
v(t) = vyt fo,(t),
w(t') = W+ fu(t), (4)

where v, (t'), vy (t') and w(t') are the translational and rotational velocities of the observer as
measured in the O frame, and the f functions vary by O (At) over the interval and satisfy
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f(t' =t) =0, then we have
z, = zp,— [vg —w'y,] At + O (A)
Yy = Up-— [vg +wz,] At + O (A#?) . (5)

Of course, the primed position variables are simply the egocentric object coordinates at time
t + At, the unprimed position variables are simply the egocentric object coordinates at time
t, and the velocity variables are the egocentric velocities at time ¢. Therefore, we can rewrite

equations 5 as
z(t+At) = 2(t) — [vL(t) —w(t)y(t)] At + O (At?)

y(t+ A1) = y(t) - [oy(t) + w(t)a(t)] At + O (At2), (6)

where z(t) and y(t) refer to the egocentric object coordinates at time ¢ and {v,(t),vy (), w(t)}
are the egocentrically measured velocities at time ¢.

We are interested in representing the egocentric location of an object by a bump of activity
across a population of neurons moving around within the observer’s egocentric reference frame
over time. This activity can be expressed as a function, A(z,y,t) over egocentric coordinates
and time. Given the value of A(z,y,t), the value of A(z,y,t + At) can easily be found by

applying the inverse of equations 6 to the arguments of A, as follows

A(z,y,t + At) =

Az + [vp(t) —w(®t)y] At + O (AL?) ,y + [vy(t) + w(t)z] At + O (A?) ,t) . (7)

The RHS of this equation may be expanded using the second Mean Value Theorem. Such an
expansion will be valid so long as the second derivatives of A and the coefficients of At remain
small. Notice, however, that these coefficients actually depend on location, so for distant objects,

more error will be introduced into the approximation. We are thus left with

A(z,y,t + At) =

Az, y,t) + [vg(t) — w(t)y] At%(x, Y, t) + [vy(t) + w(t)z] At%(w, y,t) + O (Atz) . (8)
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Recall that space in this model is to be represented as a Cartesian grid of points, with a
single main layer neuron allocated to each point. In an attempt to follow the notation of Droulez
& Berthoz (1991), we note that each of these positions and, hence, the corresponding main layer
neurons can be labelled with a positive integer, starting at 1 for the position (neuron) with the
smallest z and y value and increasing with position in the direction of increasing z until one
row is complete. The numbering continues on the row with the next lowest y value until the
last position is reached (see figure 2). By doing this, equation 8 can be discretized as follows

A(zi,yi, t + At) = Z (@ij + bijug (8) + cijvy (t) + dijw(t)) Az + dxij, yi + dyij, t), (9)

J
where x; and y; are the = and y coordinates of the sth location and dz;; and dy;; are the distances
from the ith location to the jth location along the x and y directions. The values of the a, b, c,
and d coefficients are determined by the approximation used to calculate the gradients of A. For
example, to approximate equation 8 using a centered difference rule for the partial derivatives,

the coefficients should be selected as

Qi; = 61]7
At At
bij = 57— (G415 —0i—1,5) » Cij = 57— (OitN,,j — Oi—N,,j
J 2dz;; (Gi41,5 1,7) Cij 2dys; (04N, Neoj)
At [ x; Yi
dij = — e (0i4Nayj = Gi-Nayj) — e (bi41,5 — Gi-1,5) (10)

where §;; is the Kronecker delta function and N, is the number of neurons spanning the 2-
direction.

Notice that equation 9 can be rewritten as
AM(wz-,yi,t +At) = Z a,'jAM(CL'i +dz;j,yi + dyij, t) + bz’jAV” (z; + dzij,y; + dyij,t)
J

+ e AV (@ + dwij, yi + dyij, t) + dig A (; + dwij, yi + dyij, t)

AVE (xiayiat) = ’Ua:(t)AM(mz’yz’t)
AVy (xiayiat) = Uy(t)AM(iUzayzat)
Aw(xi;yiat) = w(t)AM(miayiat)a (11)
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where we have relabelled A — AM. These equations can now be viewed as a neural network
with four layers, and the parameters a,b,c, and d can be viewed as weights (see figure 2 for a
schematic), each of which couples a spatial location at the input processing layer with another
spatial location in the transformation layer. Notice, however, that these weights are modulated
by a scalar velocity value (i.e. the network contains neurons which perform multiplicative
operations on their inputs). Neurons with this ability have been postulated in models of visual
cortex (Mel, 1993; Mel, 1994). It is also thought that neurons which show such gain modulation
are important in performing coordinate transformations in parietal cortex (Salinas & Abbott,
1996; Andersen et al., 1985). Additionally, we are assuming that the signal used to drive the
transformation is an egocentric velocity signal. This is reasonable because vestibular information
is known to project to Brodman’s area 7 which borders portions of the IPS (Kawano et al., 1980;
Kawano et al., 1984). Note that although we represent velocity as three scalar values, along the
z,y and 6 directions, the model could easily be extended to accommodate coarse coding of the
velocity signal. Finally, we are assuming a “Cartesian” distribution of neurons over egocentric
space. It seems unlikely that cortex is organized in such a way; however, this organization
is convenient for the present purposes and we do not expect the behaviour of our model to
be qualitatively changed by the specific choice of neural distribution so long as each region
of egocentric space is represented by a sufficiently high neural density. Quantitatively, for a
different neural-spatial map, we would expect more transformation error to be introduced in
areas where space is more sparsely represented.

Satisfactory performance of our model can be attained using the weights defined by 10.
However, further improvements may be made by applying a gradient descent algorithm to refine
the connection strengths. To be specific, at each iteration of the algorithm a Gaussian bump of
activity is injected into the main layer at a random location, random velocities are applied to
the network, the activity is updated for one time step and the resulting main layer activation

is compared to an exact calculation of what it should be. This comparison is used to calculate
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the value of an error function given by
2
E ({aij, bij, cijdig}) = Y [AM (@i, 95) — AM (@i,90)] (12)
i
where AM is the target activation determined as described below. The gradient of this error
function w.r.t. weights can be calculated analytically and the weight vector can thus be updated
to reduce the value of the error.

To determine the target function, AM, we note that it too must be a Gaussian with the
same width as the input Gaussian, but that it must be centered at a slightly shifted location.
This location can be determined by dividing equations 6 by At and taking the limit as At — 0.
The result is a set of two exact differential equations for the egocentric coordinates of the peak

of the Gaussian bump in time. The constant velocity solutions of these equations are

2(t) = (m(O) + %) cos(wt) + (y(O) - %) sin(wt) — %
y(t) = (y(O) - %) cos(wt) — (x(O) + %’) sin(wt) + % (13)

As one final point regarding the training method, it should be noted that the gradient descent
method used here can be made equivalent to a Hebbian-like mechanism by the addition of an
extra layer of “input” neurons which compare main layer activity to an external target signal

(see Droulez & Berthoz (1991)).

4 Simulations

In the simulations reported here, a network with 961 main layer neurons arranged in a 31 x 31
lattice in which each neuron represents a spatial area of one unit? was trained using the method
described in the previous section. Each of the three transformation layers also contained 31 x 31
neurons. The width of each Gaussian activation bump injected into the main layer for training
was chosen randomly from the interval [2,4] units (widths below 2 units result in large error
due to the discrete nature of the lattice; large widths are not useful in representing localized

objects), with the peak height always set to unity. Angular velocities were chosen randomly
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from the interval [—1,1] radians/s, while translational velocities were chosen from the interval
[—3, 3] units/s. These ranges were chosen to be reasonable for a human subject in the case of
1 unit = 1 meter, but the exact values, which have little affect on training results, were chosen
arbitrarily. A time step of 10 ms was used for training and for all simulations. With initial
weights set to the values defined in equations 10, the simple gradient descent algorithm used
here was found to converge after approximately 500,000 random infinitesimal transformations
when the learning rate was set to 5 x 10~%. Although error, as defined by equation 12, was
reduced by a factor of about 4 during this procedure, all weights remained within 4% of their
initial values after training was complete.

As a demonstration of the functioning of the model, a simulation was carried out in which
the egocentric location of a stationary object was maintained while the subject performed a
sequence of imagined motions in space (see figure 3). To begin, an object was placed 5 units
away from the subject, directly to their right. The subject turned 90 degrees to their left, moved
forward by 5 units and then turned 90 degrees to their right. The predicted trajectory of the
stationary object through egocentric space, as computed by the model, can be seen in figure 4,
where main layer activations, sampled every 20 time steps, have been superimposed. Initial and
final activations are shown in figures 5 and 6.

From figure 6, we see that the bump of activity representing the object’s egocentric coor-
dinates is somewhat attenuated and deformed by the transformation procedure. In fact, error
is introduced in the simulation via two distinct mechanisms. First, the truncated leading or-
der terms in equation 6 contain factors of vfc,vz, and w2, so simulation error should increase
quadratically in velocity for large velocities (as long as velocity x At < 1, after which point
error will increase more rapidly with increasing velocity). Second, at low velocities, truncating
the O (At2) terms will have little effect in terms of introducing error compared with the effect
of approximating the first derivatives of activation using information from a discrete lattice of
neurons. In this case, error should increase linearly with the number of time steps required for

a given transformation, or equivalently, as the inverse of velocity. A number of simulations were
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performed in order to investigate these effects. The results of two of these simulations will now
be discussed. For the first, an object was placed 5 units to the egocentric right of an observer
who then turned 90 degrees to their left. For the second, an object was placed 5 units to the
egocentric left of an observer who then moved to their egocentric right a distance which is equal
to the arc length traveled by the object in the first simulation. In both cases, the object was
represented by a Gaussian activation bump with a width of 2 units. Squared error is calculated
for the final activation using equation 12 and plotted against velocity in figures 7 and 8. In both
cases, the optimum velocity is around 2 units/s. The optimum velocity actually remains in the
[1.5,3.5] units/s interval for a wide variety of paths. Finally, the solid curves in figures 7 and 8,

which are of the form
f@) =% +a @ -ay)’ +a, (14)

were fit to the data in order to demonstrate that transformation error depends on velocity in

the way described above.

5 Discussion

In this paper, we have postulated a biologically plausible computation, implemented as a neu-
ral circuit, which explains how the contents of spatial WM can be updated to keep track of
the egocentric coordinates of remembered locations during mental navigation over time scales
shorter than 4 minutes. Error can be introduced into the representation of object location co-
ordinates during transformation via a number of different mechanisms. We have demonstrated
that the discrete nature of the representation of space and the exclusion of higher order velocity
information in a rate-coded neural circuit of this kind leads to a non-zero error regardless of the
velocity of the subject through space. This error appears to affect peak height predominantly,
but the effect on final peak location is relatively small in the simulations performed here. There
is, however, an optimum velocity range for performing transformations. Other potential sources

of error are internal and external noise, which we have not studied here.
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A final source of error in the kind of object location transformation postulated here is the
potential error introduced by the mental navigation procedure itself. This process must depend
on an internal allocentric map of the subject’s environment. Evidence indicates that this map
contains inaccuracies and imprecisions (Hirtle & Jonides, 1985), perhaps moreso in novel envi-
ronments (Hartley et al., 2000). Presumably, tasks requiring precise mental navigation would
also suffer from these errors.

Shelton & McNamara’s (2001) finding that subjects more accurately remember object con-
figurations when tested from viewpoints in which they have actually observed the object con-
figuration is readily explained by our model. Subjects would simply store an egocentric view
of the studied presentation in WM, and then mentally navigate to the test viewpoint while
updating object locations using the proposed parietal circuit. Note that this circuit can manip-
ulate and transiently represent information from spatial WM; however, we do not claim that the
original representation of object location, maintained in DLPFC, is necessarily altered by this
procedure. Therefore, the original WM snapshot information is still available for future trans-
formation and/or retrieval. This implies that subjects are still more accurate when tested at a
presentation viewpoint because no transformation is required and no error is introduced. Our
model does not, however, address the question of why information from a particular presentation
viewpoint is maintained in preference to others.

Our model also provides an explanation for the Wang & Spelke (2000) data. If we assume
that subjects have an accurate WM snapshot of object locations before disorientation, then
after disorientation they could mentally navigate from the original snapshot viewpoint to their
new estimated viewpoint while simultaneously using the egomotion signal which drives mental
navigation to transform egocentric object location coordinates. From the discussion above, we
believe that the mental navigation/parietal update procedure would introduce error into an ego-
centric object location transformation. Since we have assumed serial update, i.e., the mental
navigation procedure must be performed separately for each object, the independent error in-

flicted on each object coordinate transformation could generate an overall object configuration
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error. This would also explain the object configuration error obtained from the experiment in
which subjects were reoriented after disorientation by a bright light visible through their translu-
cent blindfold. In this case a mental navigation still must be performed from the viewpoint of
the subjects while facing the light directly to the new viewpoint.

Wang & Spelke’s (2000) results indicate that blindfolded subjects who are continuously ori-
ented are able to maintain object configurations accurately even after rotation. Performance in
these conditions, which include slow rotation, or rotation in the presence of an orienting light,
suggest minimal transformation of internal object location representations, or transformation
which induces a systematic error only. One possible explanation for how subjects could recall
object locations under continuously oriented conditions is that they could generate a displace-
ment/rotation vector via path integration. This vector could simply be added to the DLPFC
maintained object location representations at each recall. In this way, all object locations would
be subject to the same systematic error. Another possiblity is that when the subject remains
oriented, they make use of some allocentric system in which object locations are static. In this
case they must simply orient themselves w.r.t. the configuration. Given the availability of path
integration in these conditions, subjects would be able to accurately localize themselves within
the environment and this procedure should only result in a small error which would be the same
for all objects.

In addition to being consistent with a range of experimental findings regarding memory for
object locations, our model makes two easily testable predictions. First, the serial updating we
require for multiple objects suggests that a subject’s reaction time to determine if an object
configuration, seen from a novel viewpoint, is the same as one seen from a different viewpoint,
should monotonically increase with number of objects. Second, our hypothesis regarding how
object configuration error is introduced into the Wang & Spelke (2000) task suggests that, as
subjects become more familiar with a given environment, and hence develop a more precise
cognitive map, their performance on these types of tasks should improve. These predictions are

currently being investigated empirically.
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Finally, another interesting question to investigate would be the nature of how objects become
represented after being seen as stable for long periods of time, i.e., after several minutes. One
way to investigate this would be to perform an experiment similar to that of Wang & Spelke
(2000) in which the presentation phase was continued over a long period of time before testing

began.
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Figure 1: Translation and rotation of reference frame.

Figure 2: Schematic of proposed neural network. The main layer neurons are interconnected
with weights, ‘a’. They are also each connected to the neurons with the same z and y coordinates
in the other layers via unit weights. Neurons in the translational velocity layer multiply current
egocentric velocity with the corresponding main neuron activation from the current time step
and feedback with weights, ‘b’. V,, neurons have been left out of this diagram for clarity. Finally,
neurons in the angular velocity layer multiply main layer activations by current head rotation
speed and feedback with weights, ‘c’.

Figure 3: Trajectory of the person along the z-axis while maintaining the egocentric coor-
dinates of a stationary object. Each of the four levels shows the position of the person relative
to the object at a different stage of the navigation. The dashed line is the path traveled by the
person.

Figure 4: Main layer activation representing the egocentric location of a stationary object,
from the perspective of the moving observer depicted in figure 3. Main layer neurons are sampled
every 20 time steps and superimposed. The numbered arrows correspond to the numbered
observer motions in figure 3.

Figure 5: Initial main layer activation before navigation begins.

Figure 6: Final main layer activation when navigation is complete.

Figure 7: Transformation error produced by the network for an observer rotation of 90
degrees. Triangles are simulation data, solid curve is the fit to equation 14

Figure 8: Transformation error produced by the network for an observer translation of ~~ 7.8
units to their egocentric right. Triangles are simulation data, solid curve is the fit to equation

14



