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The Dentate Gyrus and its Local Circuits

ABSTRACT2

The hippocampus has been the focus of memory research for decades. While the functional3
role of this structure is not fully understood, it is widely recognized as being vital for rapid4
yet accurate encoding and retrieval of associative memories. Since the discovery of adult5
hippocampal neurogenesis in the dentate gyrus by Altman and Das in the 1960’s, many6
theories and models have been put forward to explain the functional role it plays in learning7
and memory. These models postulate different ways in which new neurons are introduced into8
the dentate gyrus and their functional importance for learning and memory. Few if any previous9
models have incorporated the unique properties of young adult-born dentate granule cells and10
the developmental trajectory. In this paper, we propose a novel computational model of the11
dentate gyrus that incorporates the developmental trajectory of the adult-born dentate granule12
cells, including changes in synaptic plasticity, connectivity, excitability and lateral inhibition,13
using a modified version of the Restricted Boltzmann machine. Our results show superior14
performance on memory reconstruction tasks for both recent and distally learned items, when15
the unique characteristics of young dentate granule cells are taken into account. Even though16
the hyperexcitability of the young neurons generates more overlapping neural codes, reducing17
pattern separation, the unique properties of the young neurons nonetheless contribute to18
reducing retroactive and proactive interference, at both short and long time scales. The sparse19
connectivity is particularly important for generating distinct memory traces for highly overlapping20
patterns that are learned within the same context.21

Keywords: Neurogenesis, Dentate Gyrus, Sparse Coding, Computational Modelling, Restricted Boltzmann Machines22

1 INTRODUCTION

The role of the hippocampus in memory has been a subject of endless fascination for many decades.23
It is widely recognized that the hippocampus is crucial for rapid, accurate encoding and retrieval of24
associative memories. However, the neural mechanisms underlying these complex operations are still25
relatively poorly understood. Marr’s theory of archicortex (Marr, 1971) was highly influential in setting26
the stage for subsequent computational theories of hippocampal function. At the core of his theory was27
the proposal that an associative memory system requires an initial coding stage followed by a subsequent28
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processing stage that performs associative retrieval. Subsequent modellers refined Marr’s ideas and further29
suggested that these functions of coding and retrieval map onto the known anatomical and physiological30
properties of the dentate gyrus and CA3 region respectively (McNaughton and Morris, 1987; Treves and31
Rolls, 1992; O’Reilly and McClelland, 1994; McClelland et al., 1995; Myers and Scharfman, 2009).32
These models incorporate an important characteristic of the mature dentate granule cells: they are heavily33
regulated by feedback inhibition, resulting in extremely sparse firing and high functional selectivity (Jung34
and McNaughton, 1993; Chawla et al., 2005). Computer simulations demonstrate that the DG is thereby35
able to improve its capacity for storing overlapping memory traces by generating less overlapping neural36
codes, a process that has come to be known as pattern separation (Rolls, 1987; O’Reilly and McClelland,37
1994; Rolls and Treves, 1998).38

The discovery of adult hippocampal neurogenesis (AHN), first in rodents (Altman and Das, 1965,39
1967) and subsequently in a wide range of mammalian species including humans (Eriksson et al.,40
1998), has forced theorists to reconsider the computational functions of the dentate gyrus. Several41
computational models incorporating neurogenesis have been put forward. These models postulate a range42
of functional roles for neurogenesis, including mitigating interference (Chambers et al., 2004; Becker,43
2005; Wiskott et al., 2006; Becker et al., 2009; Cuneo et al., 2012), temporal association of items in44
memory (Aimone et al., 2006, 2009) and clearance of remote hippocampal memories (Chambers et al.,45
2004; Deisseroth et al., 2004; Weisz and Argibay, 2009, 2012). While these different theories are not46
necessarily incompatible with one another, they make different predictions regarding the effect of temporal47
spacing.48

When similar items are spaced closely in time, some models predict that neurogenesis should increase49
pattern integration (Aimone et al., 2006, 2009). By the same token, the reverse should be true of50
animals with reduced neurogenesis: they should exhibit impaired pattern integration, and therefore,51
enhanced pattern separation for closely spaced items. Thus factors that suppress neurogenesis such stress52
and irradiation (Gould et al., 1998; Wojtowicz, 2006) should impair pattern integration, resulting in53
superior abilities to distinguish similar items that are learned within the same time period. However,54
the opposite has been observed empirically. Rodents with reduced neurogenesis are impaired at spatial55
discriminations for closely spaced locations that are learned within the same session (Clelland et al.,56
2009), while rodents with running-induced elevated neurogenesis show enhanced performance on spatial57
tests of pattern separation (Creer et al., 2010). Consistent with these data, humans who have undergone58
several weeks of aerobic exercise training show superior performance on a within-session behavioural test59
of pattern separation while those with elevated stress and depression scores show a deficit on the same60
task (Déry et al., 2013).61

When similar items are spaced widely in time, different predictions can be made regarding the fate62
of the item in remote memory versus the newly learned item. Most or all computational theories agree63
that neurogenesis should facilitate the encoding of new items, protecting against proactive interference64
from previously learned information. Empirical data support this notion. For example, animals with65
intact levels of neurogenesis are able to learn to discriminate olfactory odour pairs that overlap with pairs66
learned several days ago, whereas irradiated animals with reduced neurogenesis show greater proactive67
interference on this task (Luu et al., 2012). On the other hand, opposing predictions arise regarding the68
influence of neurogenesis on remote memories. Some theories predict that neurogenesis should promote69
clearance of remote memories (Chambers et al., 2004; Deisseroth et al., 2004; Weisz and Argibay,70
2009, 2012). Other theories make the opposite prediction, that intact neurogenesis levels should protect71
against retroactive interference of new learning on remote memories (Becker, 2005; Becker et al., 2009).72
Consistent with the latter prediction, when animals with reduced neurogenesis learn overlapping visual73
discriminations in different sessions spaced several days apart, the more recently learned discrimination74
disrupts the retrieval of the earlier memory (Winocur et al., 2012). These data support a role for75
neurogenesis in minimizing retroactive interference between remote and recent memories. However, it76
is possible that neurogenesis plays dual roles in remote memory, protecting some hippocampal memories77
from interference while causing other memories to decay.78
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Among existing computational dentate gyrus models, those that incorporate neurogenesis typically79
do so by either replacing existing neurons by re-randomizing their weights (Becker, 2005; Chambers80
et al., 2004) or introducing new neurons with random weights (Weisz and Argibay, 2009, 2012). Several81
additional models have looked at how regulation of neurogenesis can impact learning and plasticity by82
simulating dynamically regulated neural turnover and replacement. (Deisseroth et al., 2004; Crick and83
Miranker, 2006; Chambers and Conroy, 2007). Studies by Butz and colleagues even include a model84
of synaptogenesis, providing a framework for how neurogenesis regulation impacts synaptic rewiring and85
plasticity over varying time periods (Lehmann et al., 2005; Butz et al., 2006, 2008). However, none of86
these models encode the unique functional properties of young DGCs themselves into their learning rules.87

How is it that AHN can contribute to improved memory and reduced interference when similar items88
are learned within a single session as well as when items are learned across temporal separations of days89
or weeks? The present study set out to investigate whether a single computational model of hippocampal90
coding could accommodate the role played by neurogenesis across this wide range of time scales. We91
propose that the functional properties of a heterogeneous ensemble of young and mature DGCs contributes92
to this improved memory and reduced interference among similar items. The heterogeneity of the93
functional properties for DGCs map closely to the developmental trajectory of adult-generated neurons,94
as such, our model attempts to take this trajectory into account during learning (Wang et al., 2000;95
McAvoy et al., 2015). In most if not all previous DG models, these characteristics have been ignored. It is96
known that young adult-generated neurons in the DG are more plastic, have less lateral inhibition, sparser97
connectivity and are more broadly tuned than their mature counter-parts. All of these may effect how98
young DGCs learn in relation to the existing networks of mature DGCs (Schmidt-Hieber et al., 2004;99
Snyder et al., 2001; Temprana et al., 2015; Dieni et al., 2013; Piatti et al., 2013; Marin-Burgin et al.,100
2012).101

In the model described here, the maturational trajectory of adult born DGCs will be loosely based on102
data from the mouse, for DGCs from the third week of maturation onward. It is at about age 3-4 weeks103
that adult born DGCs have established synaptic afferent and efferent connections and are able to fire104
action potentials (Zhao et al., 2006). At this point, the young neurons still have decreased membrane105
resistance and elevated resting potentials, making them more excitable (Schmidt-Hieber et al., 2004;106
Snyder et al., 2001). Moreover, the young neurons are more sparsely connected to their perforant path107
inputs from the entorhinal cortex relative to mature DGCs (Piatti et al., 2013). From weeks five through108
eight the young neurons undergo a gradual decline in synaptic plasticity and are increasingly regulated109
by feedback inhibition (Temprana et al., 2015). By the eighth week the physiological properties of the110
adult-generated DGCs are largely indistinguishable from that of existing mature DGCs (Temprana et al.,111
2015; Piatti et al., 2013).112

In this paper, we propose a novel computational model of the dentate gyrus incorporating the113
developmental trajectory of adult-born DGCs, using a modified version of the Restricted Boltzmann114
machine (RBM) to model the neural circuitry and learning equations of DGCs. As will be discussed115
later, an RBM is a type of neural network model consisting of 1 layer of visible and 1 layer of hidden116
units with each visible unit connected reciprocally to each other hidden unit. In our model, a single RBM117
(not stacked RBMs) will represent the EC input and DGCs with its visible and hidden units respectively.118
As the model DGCs undergo development, they become progressively less plastic, more sparse in their119
firing, and more densely connected to their entorhinal inputs. We demonstrate how these properties can120
explain the importance of adult-generated DGCs at both short and long time scales.121

2 METHODS

In this section, we propose a novel approach to expressing neurogenesis in an artificial neural network122
model of the DG. While several replacement and additive models of neurogenesis have looked at how123
new neurons affect learning (e.g. Becker, 2005; Weisz and Argibay, 2009), few if any models have124
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considered the full range of unique properties of AHN including the developmental trajectory of of adult-125
generated neurons: changes in plasticity, connectivity, excitability and survival versus apoptosis. The126
primary contribution of this work is to provide a computational framework within which all of these127
factors can be manipulated, differentiating the role of young versus mature DGCs in memory, and the128
progression from one to the other. In the computational model described here we use the Restricted129
Boltzmann Machine (RBM) (Hinton, 2002; Smolensky, 1986; Freund and Haussler, 1992) architecture130
and learning procedure. RBMs are a type of generative, associative neural network model commonly131
used in deep learning applications (see e.g. Hinton and Osindero, 2006; Nair and Hinton, 2009). Our132
approach to expressing the neural trajectory of young DGCs in an RBM is by incorporating additional133
constraints into the learning equation, such as a dynamic learning rate and sparsity penalties. It is134
important to note that these are not limited to RBMs and could easily be applied to other types of neural135
network models (eg. multilayer perceptrons, autoencoders, recurrent neural networks, etc), however, there136
are several advantages to RBMs that will be discussed later in the discussion.137

2.1 RESTRICTED BOLTZMANN MACHINES

A Restricted Boltzmann Machine (RBM) is a type of artificial neural network model with a simple138
architecture and Hebbian learning equations. The architecture of an RBM includes a set of visible and139
hidden units or nodes. In our model the visible units will simulate the input from the EC and the hidden140
units represent the DGCs. All visible nodes are fully, reciprocally connected with all hidden nodes. In141
the field of computer science this is referred to as a bipartite graph. Importantly, unlike the original142
Boltzmann machine, an RBM has no within-layer connections, making the model more tractable. The143
synaptic connection strengths, hereafter referred to as weights, can be described by an N by M matrix,144
where N is the number of visible units and M is the number hidden units. As in most artificial neural145
network algorithms, learning is expressed via modification of this weight matrix, according to a specific146
learning rule.147

A Boltzmann machine learns a set of weights so as to form a probabilistic, generative model of the148
training data. The RBM is trained via a more tractable approximation using the contrastive divergence149
(CD) learning procedure (Hinton, 2002; Carreira-Perpinan and Hinton, 2005). The CD learning rule150
is provided in equation 1. This equation includes positive and negative Hebbian learning terms. To obtain151
the visible and hidden unit states for the positive and negative terms in the learning rule, a procedure called152
brief Gibbs sampling is used, as detailed below.153

∆Wij = ε((vihj)data − (vihj)recon) (1)

where vdata is the input vector and hdata is the data-driven hidden state generated by clamping the states154
of the visible units to vdata and sampling the hidden units’ states according to equation 2. vrecon is a155
reconstruction of the input vector generated by clamping the states of the hidden units to the data-driven156
pattern hdata and sampling the states of the visible units according to equation 3. hrecon is then created157
in the same way as hdata, but by clamping the visible units’ states to vrecon. In equations 2 and 3 below158
ai and bi represent biases which provide a mechanism for shifting the output of the sigmoid activation159
function, similar to thresholds in other neural network models.160

p(hj = 1|v) = σ(bj +
∑
i

viwij) (2)

p(vi = 1|h) = σ(ai +
∑
j

hjwij) (3)

As can be seen from the CD learning equation 1, the positive Hebbian term associates data-driven161
input and hidden state vectors, while the negative Hebbian term tries to “unlearn” the association between162
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the corresponding reconstructed visible and hidden state vectors. Theoretically, the learning procedure163
should converge when its internal reconstructions of the training patterns exactly match the corresponding164
data-driven states. In general, an RMB model’s reconstructions of the training patterns are obtained by165
alternatingly sampling nearby hidden and visible unit states using the model’s bottom-up and top-down166
weights respectively. In the simulations reported here, we applied this brief Gibbs sampling procedure167
for just one iteration. Performance of this model can be improved further by performing multiple steps of168
brief Gibbs sampling (Hinton, 2012). The Boltzmann machine learning procedure is normally performed169
repeatedly for many iterations through the training set. In contrast, here we simulated just one exposure170
to each training pattern.171

2.2 SPARSITY

In our simulations of neurogenesis, we take into consideration both sparse coding and sparse connectivity.172
Sparse coding means that very few strongly activated neurons respond to a given event. This helps to173
improve pattern separation as it minimizes the probability of overlap in the model’s internal representation174
of highly similar input patterns. As noted above, extreme sparse coding is observed in mature DG175
granule cells, but not in less mature adult-generated neurons. In our model we simulate sparse coding176
by incorporating a sparsity cost constraint into the learning objective. Our sparse coding constraint is the177
average squared difference between each hidden unit’s average activation and it’s target probability of178
activation (Nair and Hinton, 2009). By taking the derivative of this cost term with respect to the weights,179
we obtain an added component to the learning equation that adjusts the weights so as to penalize units180
whose activation deviates from a target level of sparseness. The relative importance of this sparse coding181
term increases with the age of the neurons, to simulate the increased degree of connectivity with inhibitory182
interneurons of mature DGCs. In the updated learning equation below q is the mean of our sampled hidden183
activation from equation 2 and p is our target activation probability.184

∆Wij = ε((vihj)data − (vihj)recon)− cost ∗ (q − p) (4)

Sparse connectivity describes the level of interconnectedness between the visible and hidden layers. As185
mentioned earlier, the degree of inter-connectivity is another property that changes as the young DGCs186
mature.187

We simulate the maturational evolution of increased sparse coding and decreased sparse connectivity as188
follows. In the case of sparse coding we vary the weight on the sparsity cost for each hidden unit so that189
it is smaller for young neurons and larger for their mature counterparts. To impose a sparse connectivity190
constraint, a binary matrix is used as a connectivity mask for the weight matrix. As the hidden units191
mature, the number of non-zero visible-to-hidden connections in the connectivity matrix for that hidden192
unit is increased probabilistically. At the end of each weight update the weight matrix is multiplied by this193
connectivity mask in order to maintain the ”disconnected” links to have weights of zero.194

2.3 NEURON GROWTH

Our model makes the assumption that young neurons are more plastic, have less lateral inhibition195
(simulated via our sparse coding cost) and are more sparsely connected than their mature counterparts196
(Schmidt-Hieber et al., 2004; Oswald and Reyes, 2008; Marin-Burgin et al., 2012; Wang et al., 2000).197
For simplicity, we assume that each of these characteristics follows a temporal growth curve that can be198
described with some permutation of the Gompertz function (Gompertz, 1832). The Gompertz function199
has been used to model growth in a variety of applications ranging from modelling bacterial growth in200
biology to product demand in economics (Zwietering et al., 1990; Towhidul Islama, 2002).201
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g(t) = e−e−st

(5)

The Gompertz function in equation 5 defines a sigmoid-like growth curve, where t describes the time202
step and s describes the shape or steepness of the function as can be seen in Figure 1. For our purposes, t203
is bounded between -1 and 1 and the s is always set to 5. To model young DGC growth characteristics in204
the RBM, each hidden neuron has its own set of parameters defining its current learning rate and sparsity205
constraints. Additionally, each hidden unit has a time parameter representing its age. At each simulated206
unit time interval, the age of a hidden unit is increased, and its constraint parameters are updated as207
follows. The learning rate, which can be thought of as a neuron’s plasticity level, is defined as 1 − g(t)208
normalized to lie between 0.1 and 0.3. Inversely, our sparsity cost can simply be taken from g(t) and209
normalized to lie between 0 and our initial sparsity cost of 0.9. Given these variable properties, the learning210
rule can be redefined as211

∆Wij = ε((vihj)data − (vihj)recon))− (λ ∗Wij)− cost ∗ (q − p) (6)

where the learning rate ε, weight decay λ and sparsity cost terms are now each weighted by dynamically212
changing vectors of values rather than static hyper-parameters.213

2.4 NEURAL TURNOVER

It is difficult to estimate the rate at which adult-generated neurons undergo apoptosis versus survival and214
maturation into adult DGCs. These processes are governed by many factors (see, e.g., Elmore, 2007;215
Hutchins and Barger, 1998; Cecchi et al., 2001; Cameron and R.D., 2001) and are not completely216
understood. Generally apoptosis among healthy neurons tends to be activity and age dependent (Hutchins217
and Barger, 1998; Cecchi et al., 2001) and a significant number of new DGCs survive to adult hood218
(Cameron and R.D., 2001). Using these observations, we formulate a rule for determining whether a219
given neuron will survive or undergo apoptosis based on its age, specificity and average synaptic strength.220
To assess stimulus specificity, we calculate the standard deviation of each hidden unit’s incoming weights,221
a quantity we refer to hereafter as its “differentiation”. The justification is that hidden units with equal222
weight to all visible units will be less effective at differentiating different input patterns. Similarly, to223
assess synaptic strength we calculate the average absolute value of the those incoming weights. Combining224
the differentiation and synaptic strength penalty terms, we are penalizing hidden units with incoming225
weights that are all very similar and close to zero. We rank each hidden neuron based on a weighted226
average of its synaptic strength, differentiation and age with the equation given below. Neurons within the227
lowest 5% of this ranking undergo simulated apoptosis by having their age reset to 0 and weights reset to228
random initial values (or set to 0 in the case of bias weights).229

Zi = (α ∗ Strengthi + β ∗Differentiationi + γ ∗ Agei)/(α + β + γ) (7)

where230

• Strengthi is the average of the weights from all visible units to a given hidden unit i.231
• Differentiationi is the standard deviation of the visible weights to hidden unit i232
• Agei is our recorded age for the hidden unit i233
• α, β & γ are coefficients for modifying the relative importance of the Strength, Differentiation234

and Age terms. For our simulations these are set to 0.2, 0.65 and 0.15 respectively.235

2.5 EXPERIMENTS

All models simulated in the experiments reported here used contrastive divergence with 1 step Gibbs236
sampling on a single layer RBM as described above. A learning rate of 0.1 was used for all non-237
neurogenesis models and a value between 0.1 and 0.3 was used for all neurogenesis models. For all238
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sparse coding models the expected probability of activation for each hidden unit (representing the target239
sparseness of mature DGCs) was set to 0.05. This is a very conservative constraint as previous models240
and empirical studies have this set at around an order of magnitude lower, 0.004 or 0.4% (Barnes et al.,241
1990; Jung and McNaughton, 1993). All models had 200 visible units and 1000 hidden units in order242
to roughly match the relative numbers of EC and DG neurons respectively observed in rodents, as in243
previous models (O’Reilly and McClelland, 1994). For all experiments, each model was trained on244
mini-batches of 5 training patterns at a time, 1 sample from each parent class as described below. In order245
to simulate rapid one-shot learning, only 1 iteration through the training set was taken. Similar to Orielly246
and McClelland (1994), we set the expected probability of activation of each unit in the training and test247
patterns (representing the activation level of each EC input unit) to be 0.1.248

Each simulated model was trained on a set of binary patterns representing input from the entorhinal249
cortex. These patterns were randomly generated, with ten percent of the elements of each pattern being250
active (set to 1.0) and the remainder inactive (set to 0.0). The patterns were created as random variations251
on a base set of prototypes, so as to create patterns that had varying degrees of similarity. Initially, five252
binary seed patterns were created, representing prototype patterns from 5 different classes. For each of253
these classes, 10 additional overlapping prototypes were generated by randomly resetting 20% percent of254
the original pattern. From these 55 prototypes (representing 5 classes and 11 subclasses per class), 1200255
patterns were generated and partitioned into 1000 training patterns and 200 test patterns. Each of these256
patterns were created by randomly resetting another 5% of the elements in one of the subclass patterns.257

While the training and testing scenarios varied between experiments, our evaluation of performance258
remained the same. A test pattern was presented to the model and the Hamming distance between the259
input pattern and the model’s reconstruction of that test pattern was calculated using the equation provide260
in equation 8. From there the percent match was calculated using equation 9, where l is the length of the261
Vdata and Vrecon. This metric serves as an approximation of the formal log-likelihood cost function for the262
Boltzmann model, however, other approximations such as brief gibbs sampling and small mini-batches263
are inherent to the RBM model.264

D(Vdata, Vrecon) =
n∑

i=1

|(Vdatai − Vreconi)| (8)

M(Vdata, Vrecon) = 1− (D(Vdata, Vrecon)/l) (9)

Before introducing neurogenesis into the models, in simulation 1, we evaluated the contribution of265
sparse coding to associative memory in the DG model. Thus, we compared the accuracy of the sparse266
coding RBM with the base RBM lacking a sparse coding constraint. We hypothesized that the sparse267
coding RBM would perform better, particularly for encoding highly similar patterns. We evaluated this268
and all other models on both proactive and retroactive interference. Learning a pattern that is highly269
similar to one the model previously learned is a source of proactive interference, potentially making it270
more difficult to encode the current pattern. Additionally, learning the current pattern could interfere271
retroactively with the model’s ability to retrieve a previously learned overlapping pattern. Thus each272
model was trained on groups of patterns, consisting of all training patterns from 5 of the 55 prototypes (90273
patterns for a training set of 1000), one from each class, and immediately tested with the corresponding274
test patterns on its accuracy at reconstructing these patterns. As mentioned above these patterns were275
presented to the model in mini-batches of 5 (1 example per class), and the training and test patterns had276
noise added to them from their prototypes by randomly resetting 5% of the elements. It was then trained277
on another group of 90 patterns with one prototype selected from each class, with each successive group278
of 90 patterns overlapping with previously learned patterns. After learning the entire set of 1000 patterns279
consisting of 11 groups of 90, the model was finally tested on its ability to reconstruct all test patterns280
from all previously learned groups to test retroactive interference.281
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In Simulation 2, the sparsely coded RBM with neurogenesis, with and without sparse connectivity, was282
compared to the sparse RBM. We were particularly interested in how the neurogenesis model would283
perform at encoding and recognizing similar patterns when they were encountered within the same284
learning session versus across different learning sessions spaced more widely in time. We therefore285
compared the performance of the various models across 2 conditions: 1) same-session testing in which286
the neurogenesis models had no neural turnover or growth, 2) multi-session testing which had both287
neural growth and neural turnover. The same-session testing condition was created with no simulated288
passage of time after training on each successive group of 90 patterns. In contrast, for multi-session289
training conditions the passage of time between training on blocks of 90 patterns were simulated by290
incrementing the neuron age parameter for all hidden units after each group of 90 patterns. As discussed291
previously neural growth was simulated by incrementing the age parameter and recomputing the learning292
rate and sparsity cost using the Gompertz function for each hidden unit. Similarly, to simulate neural293
turnover, we ranked the performance of each hidden unit based on the weighted average of the synaptic294
strength, differentiation and age as described earlier, and reinitialized the lowest 5%. Both neural turnover295
and growth were performed between sessions (or groups of 90 patterns) when we incremented the age296
parameter of the hidden units.297

Our hypothesis for same-session testing was that the neurogenesis models would perform better than298
the sparsely coded RBM without neurogenesis due to the presence of a few young more plastic neurons.299
Further, because the available pool of young excitable neurons would be constant for same-session300
learning, making it difficult for the model to generating distinctive traces for similar items experienced301
within the same context, we predicted that sparse connectivity would be particularly important for same-302
session learning. For multi-session testing, giving that a new pool of young neurons would be available303
at each learning session, we hypothesized that the neurogenesis models would perform even better then304
they did for same-session testing. Further, allowing some of the young neurons to mature and forcing305
less useful neurons to be replaced was predicted to lead to improved reconstruction accuracy with lower306
proactive and retroactive interference.307

3 RESULTS

The results from initial test comparing the sparse coding RBM with the base RBM, show a significant308
improvement in overall reconstruction accuracy, as can be seen in both the during and post training tests309
shown Figures 2A and 2B respectively, as well in the summary graph in Figure 2D. Similarly, the sparse310
coding was shown to be effectively helping to increase pattern separation, as can be seen by the reduced311
pattern overlap of the hidden unit activations in Figure 2C. It is note worthy that the overlap for the base312
RBM was less than 30% and the slow increase in performance during training suggests that it was able to313
learn the sparse representation of the dataset to some extent, but not as quickly as its sparse counterpart.314

The same session tests showed improved accuracy for both neurogenesis models, even without neural315
aging or turnover. This was expected since the initial age of the hidden units were randomly selected,316
allowing the encoded characteristics of our young neurons provide the necessary advantage. The sparse317
connectivity appears to provided a further advantage for same session testing as we can see in Figure318
3D. Interestingly, Figure 3C shows that the neurogenesis models have more overlap among hidden unit319
activation than the normal sparse RBM, which demonstrates that the neurogenesis models are providing an320
opportunity to have slightly less sparse activations due to the young neurons. Another interesting pattern321
that can be seen in Figure 3B, which shows a kind of recency effect found in numerous memory studies322
Murdock (1962).323

The multi session tests showed similar improvement as expected. Figure 4D once again shows the324
neurogenesis models outperforming the sparse RBM model. Once again, we can also see from Figure 4B325
a recency effect from the neurogenesis models. However, the use of neural maturation and turnover in326
the multi session tests provided less benefit to overall performance than expected. While the non-sparsely327
connected neurogenesis model did see about a 1% increase in performance from the same session tests,328
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the sparsely connected neurogenesis model saw no improvement and did about the same as its non-sparse329
counterpart. Interestingly, the increased overlap for the sparsely connected model is no longer present for330
our multi session tests and instead the overlap for the non-sparsely connected neurogenesis model has331
increased. This latter point, suggests that the sparse connectivity and neural turnover work in equilibrium332
with each other depending on the learning demands required.333

In summary, the results from the neurogenesis tests showed an improvement over the sparse coding334
RBM in all cases with and without sparse connectivity. Similarly, the sparse connectivity did show335
better performance on the same session scenario, however, it showed no significant improvement for336
multisession tests. This suggests that the sparse connectivity of young neurons provides improved337
performance on pattern separation and completion tasks in the short term, but provide little benefit for338
longer term applications. Table 1 shows the mean values and confidence intervals from the post training339
tests for each simulation.340

4 DISCUSSION AND FUTURE WORK

The main goal of this paper was to investigate whether the unique characteristics of young adult-341
born DGCs during their maturation period, such as increased synaptic plasticity and reduced lateral342
inhibition (Schmidt-Hieber et al., 2004; Marin-Burgin et al., 2012), contribute to learning novel,343
highly overlapping patterns. We were particularly interested in the potential contribution of these various344
properties of young neurons to interference reduction when similar patterns are encountered at short versus345
long time spacings.346

We chose to simulate the contribution of neurogenesis to memory encoding using a Restricted347
Boltzmann Machine (RBM) to simulate the dentate gyrus circuitry. This was achieved by adding a348
set of additional constraints to the RBM learning rule to simulate the properties of young immature349
neurons as they evolve over time into mature granule cells. While several neural network models exist350
which are more biologically plausible than RBMs, the RBM has several useful properties which require351
little computational overhead. Unlike most other types of artificial neural network models RBMs can be352
stacked and trained sequentially to form deep multilayer networks without relying on back-propagation.353
In contrast, deep networks trained by the error back-propagation learning procedure (LeCun, 1985;354
Rumelhart et al., 1986) suffer from the vanishing gradient problem (Hochreiter et al., 2001). Put355
another way, the learning typically gets lost in the noise and converges on a very poor set of weights.356
Furthermore, these models are considered to be less biologically plausible due the requirement of357
non-local computations (Stocco et al., 2011). The RBM has the additional advantage of forming a358
generative model of the data. Hence, this model can generate novel input patterns from the same data359
distribution that it was trained on. It thereby has the potential to simulate cognitive processes such as360
memory reconstruction and consolidation (Kali and Dayan, 2002). RBMs have also been used in various361
challenging machine learning problems ranging from image and document classification, (Hinton and362
Osindero, 2006; Salakhutdinov and Hinton, 2010) to user rating systems (Salakhutdinov et al., 2007),363
but have rarely been used in modelling the nervous system. Given that our objective was to see how the364
variability in plasticity, lateral inhibition and connectivity among a heterogenous pool of young and mature365
DGCs impacts memory and interference, the RBM satisfied our requirements. As previously mentioned,366
our learning rule modifications are not specific to the RBM and could easily be combined with other367
neural network learning rules. For example, autoencoders, multilayer perceptrons and recursive neural368
networks can all use the same variability in learning rate, weight decay and sparsity constraints based on369
the age of the neurons in the DG layer.370

Previous modelling studies have shown that the sparse coding caused by lateral inhibition within371
the DG results in improved pattern separation (O’Reilly and McClelland, 1994) which is useful for372
distinguishing highly similar patterns. We reaffirmed this in simulation 1, where we compared the373
reconstruction of highly similar patterns for an RBM with and without a sparse coding constraint.374
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Similar to previous studies, we found significantly better performance for the RBM using a sparse coding375
constraint.376

Our main finding is that the models with a mixture of young and old neurons did not learn a neural377
code that maximized pattern separation, and yet they outperformed models with sparser, less overlapping378
codes but lacking neurogenesis. This may seem counter-intuitive in light of the findings of simulation 1:379
for models lacking neural turnover, those with a sparse coding constraint were superior. An alternative380
explanation for these results is that the degree of pattern separation achieved by the control model (sparsely381
coded RBM lacking neurogenesis) was so high (less than 0.05% pattern overlap in some cases; see Figure382
3C) that it would be impossible for models without such a sparseness constraint on the young neurons383
to achieve the same degree of pattern separation. However, a closer examination of the distribution of384
pattern separation scores versus model performance makes this explanation seem unlikely. The RBM has385
the flexibility to learn any neural code that is optimal for pattern reconstruction, ranging from a sparse386
code to a highly distributed code. In fact, the sparse RBM and the RBM with neurogenesis produced387
codes with varying degrees of pattern separation in different cases (see Figure 3C), and there was388
considerable overlap in the distributions of pattern separation scores for the two models. In cases where389
the sparse RBM achieved the highest degree of pattern separation (the bottom tail of the distribution390
in Figure 3C) the sparse RBM actually performed most poorly. In other cases where the sparse RBM391
converged to somewhat less sparse codes, performance appeared to be asymptotically approaching about392
95% (the top end of the distribution in Figure 3C). On the other hand, models with neurogenesis achieved393
performance approaching 100%, in spite of a wide range of pattern separation scores; in some situations394
the neurogenesis models achieved comparable pattern separation to the sparse RBM but still produced395
superior performance. These results support our main conclusion that a heterogeneous model with a396
balance of mature more sparsely firing neurons and younger neurons with higher firing rates achieves397
superior pattern encoding relative to a purely sparse code. While our simulations suggest that the addition398
of younger, more hyperactive neurons strictly leads to reduced pattern separation, McAvoy et al (2015)399
suggest that young neurons may counter this effect via potent feedback inhibition of mature granule cells.400
The latter mechanism could thus compensate for the increased activity in the young neuronal population401
by inducing greater sparsity in the mature population. The net result of this could be a homeostatic402
maintenance of the overall activity level in the dentate gyrus (McAvoy et al., 2015). In either case, pattern403
separation is obviously not a strict requirement for accurate neural coding. The more distributed code404
learned by the models with a pool of younger neurons seems to offer a good compromise between high405
pattern separation and high plasticity.406

Sparse connectivity was found to be critical when the model attempted to encode similar patterns407
encountered within a single training session. In this case, the model would not have the opportunity408
to generate a set of new neurons between encoding of one similar pattern and the next, and it therefore409
had to rely on sparse connectivity of the young neurons to generate distinct responses to similar patterns.410
Across a longer temporal separation, some of the young neurons would have matured while there would411
be additional young, more plastic neurons available to encode successive similar patterns. Thus, these412
additional properties of greater plasticity and higher activation were more important for separating patterns413
that were encountered across longer time scales. While these results shed light on the ways in which414
different features of young neurons may contribute to memory, there are several limitations to our models415
that will need to be addressed in future work.416

The current model using the RBM requires reciprocal connectivity between the input and output layers,417
whereas the known anatomy of the dentate gyrus does not support this architecture; dentate granule cells418
do not project back to the entorhinal cortex. However, in an elaborated version of this model (Becker and419
Hinton, 2007) that will be developed further in future work, we incorporate the reciprocal connections420
between the CA3 and the dentate gyrus (Myers and Scharfman, 2011), and between the CA3 and the421
entorhinal cortex, thus providing a natural fit of the stacked RBM architecture as described earlier to422
that of the hippocampal circuit. This full hippocampal circuit model will be required to explore the423
functional impact of young vs mature DGCs on hippocampal learning, particularly when investigating424
the performance changes on memory recall (pattern completion) and sequence replay tasks. Similarly, the425
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the generative characteristics of the RBM combined with this stacked architecture provide a method of426
simulating imagination and dreaming along with memory reconstruction.427

The model of the young adult-born DGC maturation presented in this paper looked specifically at428
changes in synaptic plasticity and lateral inhibition during the cell development trajectory, however, it429
does not take into account temporal changes in action potential kinetics (Schmidt-Hieber et al., 2004;430
Marin-Burgin et al., 2012). This temporal component would be a valuable contribution for future work,431
particularly when modelling spatio-temporal learning and sequence replay (Karlsson and Frank, 2009).432

Finally, we modelled neurogenesis and apoptosis as one operation with the simplified replacement433
approach. However, in future work neurogenesis and apoptosis should be treated as two independent434
processes for regulating the population of DGCs. We propose creating a hybrid additive and replacement435
model in which neurogenesis can be up or down regulated in order to better investigate the role of436
neurogenesis in pattern separation and completion tasks over varying time spans. This ability to up437
and down regulate neurogenesis could prove extremely useful in exploring the results of recent studies438
examining the potential role of neurogenesis in human memory at both short and long time scales. A439
recent study by Dery, Goldstein & Becker showed that lower stress and depression scores, which were440
presumed to correlate with higher neurogenesis levels, result in improved item recognition over larger441
time spans (two weeks) (Déry et al., 2015).442

In summary, our results suggest that the developmental trajectory of adult-born DGCs may be important443
in explaining the role of young neurons in interference reduction at both short and long time scales.444
Interestingly, even though the young neurons decrease sparseness and pattern separation, they play a445
critical role in mitigating both retroactive and proaction interference. Future work in this area should446
address the following questions: The most important are 1) What is the functional impact of DGC447
maturation on full Hippocampal learning tasks? 2) How do changes in the temporal dynamics of action448
potentials between young and mature DGCs impact these results? 3) How could this model of young vs449
mature DGCs be expanded into a hybrid additive & replacement model?450
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8 SUPPLEMENTAL DATA

9 TABLES AND FIGURES

Table 1. Post training summary statistics for the 3 simulations. Mean accuracies of each pair of
models and 99% bootstrapped confidence intervals around the difference between means are shown; *’s
indicate statistically significant differences (those with confidence intervals which do not include 0). The
confidence intervals were generated by calculating the difference in mean performance of pairs of models
across 20 repeated simulations with different randomly generated training and test sets. From these 20
repeated simulations, we generated 10,000 bootstrapped resamples, to obtain bootstrapped estimates of
the distributions of the mean differences

Simulation Models Means Confidence Interval Significant

1 - SameSession
RBM vs SparseRBM (0.844, 0.884) (0.03, 0.054) *

2 - SameSession
SparseRBM vs Neurogenesis (0.883, 0.938) (0.035, 0.057) *
SparseRBM vs Neurogenesis Sparsely Connected (0.883, 0.938) (0.04, 0.065) *
Neurogenesis vs Neurogenesis Sparsely Connected (0.93, 0.938) (0.006, 0.01) *

2 - MultiSession
SparseRBM vs Neurogenesis (0.883, 0.934) (0.04, 0.06) *
SparseRBM vs Neurogenesis Sparsely Connected (0.883, 0.932) (0.037, 0.058) *
Neurogenesis vs Neurogenesis Sparsely Connected (0.934, 0.932) (-0.004, 0.0)

Figure 1. Gompertz function where s is set to 5 and t is between -1 and 1.
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Figure 2. Simulation 1: performance of the models with and without sparse coding on within-session
pattern reconstruction tests. The models were trained sequentially on 11 groups of 90 patterns, and
tested on noisy versions of these training patterns after each group to test proactive interference and
after all groups had completed to test retroactive interference. (A) Shows proactive interference for input
reconstruction accuracies during training. (B) Shows retroactive interference for input reconstruction
accuracies on each group after training to test retroactive interference. (C) Shows the relationship between
post training reconstruction accuracy with hidden unit activation overlap. (D) Shows the distribution of
post training accuracy over all groups.
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Figure 3. Simulation 2: performance of the models with and without neurogenesis and sparse connectivity
on within-session pattern reconstruction tests. The models were trained sequentially on 11 groups of
90 patterns, and tested on noisy versions of these training patterns after each group to test proactive
interference and after all groups had completed to test retroactive interference. (A) Shows proactive
interference for input reconstruction accuracies during training. (B) Shows retroactive interference for
input reconstruction accuracies on each group after training to test retroactive interference. (C) Shows the
relationship between post training reconstruction accuracy with hidden unit activation overlap. (D) Shows
the distribution of post training accuracy over all groups.
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Figure 4. Simulation 2: performance of the models with and without neurogenesis and sparse connectivity
on across-session pattern reconstruction tests. The models were trained sequentially on 11 groups of
90 patterns, and tested on noisy versions of these training patterns after each group to test proactive
interference and after all groups had completed to test retroactive interference. (A) Shows proactive
interference for input reconstruction accuracies during training. (B) Shows retroactive interference for
input reconstruction accuracies on each group after training to test retroactive interference. (C) Shows the
relationship between post training reconstruction accuracy with hidden unit activation overlap. (D) Shows
the distribution of post training accuracy over all groups.
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