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Abstract

It is generally accepted that children have sensorimotor mental representations for concepts even before they learn
the words for those concepts. We argue that these prelinguistic and embodied concepts direct and ground word learn-
ing, such that early concepts provide scaffolding by which later word learning, and even grammar learning, is enabled
and facilitated. We gathered numerical ratings of the sensorimotor features of many early words (352 nouns, 90 verbs)
using adult human participants. We analyzed the ratings to demonstrate their ability to capture the embodied meaning

of the underlying concepts. Then using a simulation experiment we demonstrated that with language corpora of suffi-
cient complexity, neural network (SRN) models with sensorimotor features perform significantly better than models
without features, as evidenced by their ability to perform word prediction, an aspect of grammar. We also discuss
the possibility of indirect acquisition of grounded meaning through ‘‘propagation of grounding’’ for novel words in
these networks.
� 2005 Elsevier Inc. All rights reserved.
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Considerable evidence suggests that by the time chil-
dren first begin to learn words around the age of 10–12
months, they have already acquired a fair amount of
sensorimotor (sensory/perceptual and motor/physical)
knowledge about the environment (e.g., Lakoff, 1987;
Lakoff & Johnson, 1999; Bloom, 2000; Langer, 2001),
especially about objects and their physical and percep-
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tual properties. By this age children are generally able
to manipulate objects, navigate around their environ-
ment, and attend to salient features of the world, includ-
ing parental gaze and other cues important for word
learning (Bloom, 2000). Some have suggested that this
pre-linguistic conceptual knowledge has a considerable
effect on the processes of language acquisition (Lakoff,
1987; Mandler, 1992; Smith & Jones, 1993) and even
on later language processing (e.g., Glenberg & Kaschak,
2002; Barsalou, 1999). We also argue that the evidence
indicates that this early prelinguistic knowledge has
great impact, directly and indirectly, throughout a num-
ber of phases of language learning, and we attempt to
begin to demonstrate this with a neural network model.
ed.
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To begin with, this prelinguistic conceptual informa-
tion helps children to learn their first words, which cor-
respond to the most salient and imageable (Gillette,
Gleitman, Gleitman, & Lederer, 1999) objects and ac-
tions in their environment, the ones they have the most
experience with physically and perceptually. Generally
speaking, the more ‘‘concrete’’ or ‘‘imageable’’ a word,
the earlier it will be learned. This helps to explain the
preponderance of nouns in children�s early vocabularies
(see Gentner, 1982). The meanings of verbs are simply
more difficult to infer from context, as discussed by as
demonstrated by Gillette et al. (1999). Only the most
clearly observable or ‘‘concrete’’ verbs make it into chil-
dren�s early vocabularies. However, later verbs are ac-
quired through the assistance of earlier-learned nouns.
If a language learner hears a simple sentence describing
a real-world situation, such as a dog chasing a cat, and
already knows the words dog and cat, the only remain-
ing word must be describing the event, especially if the
learner already has built up a pre-linguistic concept of
‘‘dogs chasing cats’’ at the purely observational level.
As Bloom (2000) describes, the best evidence for
‘‘fast-mapping’’ or one-shot learning of words in chil-
dren comes from similar situations in which only one
word in an utterance is unknown, and it has a clear,
previously unknown, physical referent present. Of
course, since the verb chase refers to an event rather
than an object, the above example is not an exact fit
to the fast-mapping phenomenon as it is usually de-
scribed, but it is similar.

These very first words that children learn thus help
constrain the under-determined associations between
the words children hear and the objects and events in
their environment, and help children to successfully
map new words to their proper referents. This happens
through the use of cognitive heuristics such as the idea
that a given object has one and only one name (Mark-
man & Wachtel, 1988), or more basic object-concept
primitives (Bloom, 2000) such as object constancy.With
a critical mass of some 50 words, children begin to learn
how to learn new words, using heuristics such as the
count-noun frame, or the adjective frame (Smith,
1999). These frames are consistent sentence formats of-
ten used by care-givers that enable accurate inference
on the part of the child as to the meaning of the framed
word, e.g., ‘‘This is a ___.’’ These factors combine to
produce a large increase in children�s lexical learning
at around 20 months. As they begin to reach another
critical mass of words in their lexicon (approaching
300 words), they start to put words together with other
words—the beginnings of expressive grammar (Bates &
Goodman, 1999). Around 28 months of age children en-
ter a ‘‘grammar burst’’ in which they rapidly acquire
more knowledge of the syntax and grammar of their lan-
guage, and continue to approach mature performance
over the next few years.
By this account of language acquisition, conceptual
development has primacy; it sets the foundation for
the language learning that will follow. Words are given
meaning quite simply, by their associations to real-
world, perceivable events. Words are directly grounded

in embodied meaning, at least for the earliest words.
Of course, it may not be just simple statistical associa-
tions between concepts and words in the environment;
the child is an active learner, and processes like joint
attention or theory of mind may greatly facilitate the
learning of word to meaning mappings (Bloom, 2000).

Of course, it seems clear that the incredible word-
learning rates displayed by older children (Bloom,
2000) indicate that words are also acquired by linguistic
context, through their relations to other words. Children
simply are learning so many new words each day that it
seems impossible that they are being exposed to the ref-
erents of each new word directly. The meanings of these
later words, and most of the more abstract, less image-
able words we learn as adults, must clearly be acquired
primarily by their relationships to other known words.
It may in fact be true that these meanings can only be ac-
quired indirectly, through relationships established to
the meanings of other words.

Evidence for the indirect acquisition of meaning is
not limited to the speed with which children learn words.
The work of Landauer and colleagues (e.g., Landauer
and Dumais, 1997; Landauer, Laham, & Foltz, 1998)
provides perhaps the clearest demonstration that word
‘‘meanings’’ can be learned solely from word-to-word
relationships (although see Burgess & Lund, 2000; for
a different method called HAL). Landauer�s Latent
Semantic Analysis (LSA) technique takes a large corpus
of text, such as a book or encyclopedia, and creates a
matrix of co-occurrence statistics for words in relation
to the paragraphs in which they occur. Applying singu-
lar-value decomposition to this matrix allows one to
map the words into a high-dimensional space with
dimensions ordered by significance. This high-dimen-
sional representation is then reduced to a more manage-
able number of dimensions, usually 300 or so, by
discarding the least significant dimensions. The resulting
compressed meaning vectors have been used by Landa-
uer et. al. in many human language tasks, such as multi-
ple choice vocabulary tests, domain knowledge tests, or
grading of student exams. In all these cases, the LSA
representations demonstrated human-level performance.

While models based on these high-dimensional repre-
sentations of meaning such as LSA and HAL perform
well on real world tasks, using realistically sized vocab-
ularies and natural human training corpora, they do
have several drawbacks. First, they lack any consider-
ation of syntax, since the words are treated as unordered
collections (a �bag of words�). Second, LSA and HAL
meaning vectors lack any of the grounding in reality that
comes naturally to a human language learner. Experi-
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ments by Glenberg and Robertson (2000) have shown
that the LSA method does poorly at the kinds of reason-
ing in novel situations that are simple for human seman-
tics to resolve, due largely to the embodied nature of
human semantics.

So it seems that there are two sources of meaning, di-
rect embodied experience, and indirect relations to other
words. However, there is an infinite regress in the latter.
If words are only ever defined in relation to other words,
we can never extract meaning from the system. We
would have only a recursive system of self-defined mean-
ing, symbols chained to other symbols (similar to
Searle�s Chinese Room argument, Searle, 1980). To
avoid this dilemma, at least some of the words in our
vocabularies must be defined in terms of something
external. In children, at least, the earliest words serve
this role. They are defined by their mappings to pre-lin-
guistic sensory and motor experience, as discussed
above. They do not require other words to define their
meaning. The most imageable words are thus directly
grounded, while the less imageable and more abstract
words that are encountered during later learning are
more and more indirectly grounded. At some point,
we argue, the adult semantic system begins to look much
like the LSA or HAL high-dimensional meaning space,
with our many abstract words (e.g., love, loyalty, etc.)
defined by relations among words themselves. However,
the mature human semantic system is superior to the
high-dimensional models, since it can trace its meaning
representations back to grounded, embodied meaning,
however indirectly for abstract words.

Intuitively, this is something like trying to explain an
abstract concept like ‘‘love’’ to a child by using concrete
examples of scenes or situations that are associated with
love. The abstract concept is never fully grounded in
external reality, but it does inherit some meaning from
the more concrete concepts to which it is related. Part
of the concrete words� embodied, grounded, meaning
becomes attached to the abstract words which are
often linked with it in usage. By our account, the
grounded meaning �propagates� up through the syntactic
links of the co-occurrence meaning network, from the
simplest early words to the most abstract. Thus we have
chosen to call this the ‘‘propagation of grounding’’
problem. We argue that this melding of direct, embod-
ied, grounded meaning with high-dimensional, word
co-occurrence meaning is a vital issue in understanding
conceptual development, and hence language develop-
ment. We believe it is essential to resolving the disputes
between embodied meaning researchers and high-dimen-
sional meaning researchers.

In previous work (Howell & Becker, 2000, 2001; Ho-
well, Becker, & Jankowicz, 2001) we began developing
what we consider to be a promising method for model-
ing children�s language acquisition processes using neu-
ral networks. In this work, we continue this effort,
emphasizing the inclusion of pre-linguistic sensorimotor
features that will ground in real-world meaning the
words that the network will learn. This is a necessary
precursor to addressing the ‘‘propagation of grounding’’
problem itself.

Our overall goal is to capture with one model the es-
sence of the process by which children learn their first
words and their first syntax or grammar. As mentioned
above, this is a period stretching from the earliest onset
of the first true words (10–12 months), through the ‘‘lex-
ical-development burst’’ around 20 months up to the so-
called ‘‘grammar burst’’ around 28 months. Developing
a network that attempts to model the language acquisi-
tion that is happening during this period in children is,
of course, an ambitious undertaking, and our models
are still relatively simple. However, given the discussion
on propagation of grounding above, this sort of devel-
opmental progression may actually be necessary not just
for children learning language, but also for any abstract
language learner such as a neural network or other com-
putational model. That is, a multi-stage process of con-
strained development may be necessary to simplify the
problem and make it learnable, with each �stage� provid-
ing the necessary foundation for the next, and ensuring
that meaning continues to be incorporated in the pro-
cess. As such, we seek to develop and extend a single
model that can progress through these �stages� of lan-
guage acquisition, from initial lexical learning, through
rapid lexical expansion, to the learning of the earliest
syntax of short utterances. Developing a model that fits
developmental behavioral data on child language acqui-
sition is one way to ensure that this process is being fol-
lowed. For the simulations reported here, we have
adopted and extended the Simple-Recurrent Network
architecture that has been shown many times to be capa-
ble of learning simple aspects of grammar, namely basic
syntax (e.g., Elman, 1990, 1993; Howell & Becker, 2001).
Furthermore, SRN�s have been shown to be able to pro-
duce similar results to high-dimensional meaning mod-
els. Burgess and Lund (2000) point out that their HAL
method using their smallest text window produces simi-
lar results in word meaning clustering to an Elman SRN.
Also, they state that the SRN is somewhat more sensi-
tive to grammatical nuances. SRN�s may be able to
model the acquisition of meaning and grammar, unlike
the high-dimensional approaches.

The present emphasis of our model is on the inclu-
sion of sensorimotor knowledge of concepts or words
(for clarity, in what follows we use the term ‘‘concept’’
to mean the mental representation of a thing or action,
and the term ‘‘word’’ to mean merely the linguistic sym-
bol that represents it). This pre-linguistic sensorimotor
knowledge (following Lakoff, 1987) is represented by a
set of features for each word presented to the network,
features that attempt to capture perceptual and motor
aspects of a concept, such as ‘‘size,’’ or ‘‘hardness,’’ or



S.R. Howell et al. / Journal of Memory and Language 53 (2005) 258–276 261
‘‘has feathers’’. If a word that the network experiences is
accompanied by a set of values or ratings on these fea-
ture dimensions, then the network should be able to
do more than just manipulate the abstract linguistic
symbol of the concept (the word itself). Like a child
learning the first words, it should then have some access
to the meaning of the concept. The network�s under-
standing would be grounded in embodied meaning, at
least at the somewhat abstracted level available to a
model without any actual sensory abilities of its own.

Unlike most existing language models that employ
semantic features (e.g., Hinton & Shallice, 1991; McRae,
de Sa, & Seidenberg, 1997) our sensorimotor feature set
has been designed to be pre-linguistic in nature. That is,
features that derive from associative knowledge about
which words occur together or other language-related
associations are excluded. Only features that a preverbal
child could reasonably be expected to experience directly
through his or her perceptual and motor interactions
with the world are included. As discussed above, while
children�s first words are obviously learned without
any knowledge of language-related word associations,
children quickly begin to incorporate linguistic associa-
tive information into the semantic meanings of concepts.
Certainly, at some point words begin to acquire meaning
not only from the sensory properties of the concept, but
from the linguistic contexts in which the word has been
experienced. We take the conservative stance herein of
excluding any linguistic associative influences on senso-
rimotor meaning; the sensorimotor feature representa-
tions do not change with linguistic experience. This is
primarily for practical issues of implementation. The
network is capable of learning these associations, but
they do not affect the sensorimotor feature representa-
tions directly.

Whereas most language models employ binary fea-
tures, our features are scalar-valued (range 0–1), allow-
ing a network to make finer discriminations than
merely the binary presence or absence of a feature.
For example, two similar items (for example, two cats)
may be perceived, but they are not identical; one is lar-
ger. Our dimension of size would differentiate the two,
with one receiving a rating of 0.2, one of 0.3. Binary fea-
tures cannot easily make such fine distinctions. Finally,
inspired by the work of McRae et al. (1997) on hu-
man-generated semantic features, the feature ratings
that we use are all derived empirically from human
participants.

One of the advantages of the neural network model
of child language development that we present below
is the ability to measure word-learning performance
using analogues of lexical comprehension tasks that
have been used with children. Since the network learns
to associate the sensorimotor features of each concept
with a separate phonemic representation of the word,
it is possible to examine the strength of the connection
in either direction. Thus, given the phonemes of the
word, we can measure the degree to which the network
produces the appropriate sensorimotor meaning vector.
This we refer to as the �grounding� task, analogous to
when a child is asked questions about a concept and
must answer with featural information, such as ‘‘What
kind of noise does a dog make?’’ or ‘‘Is the dog furry?’’
Similarly, we can also ask if, when given the meaning
vector alone, the network will produce the proper word.
This is an analogue to the �naming� task in children,
where a parent points to an object and asks ‘‘What is
that?’’ In the network, if the completely correct answer
is not produced, we can still measure how close the out-
put was to the correct answer. For example, we can
check whether the answer was a case of ‘‘cat’’ produced
in place of �dog�, two concepts with a high degree of fea-
tural overlap, or whether it was a complete miss. In this
paper, we address the grounding task, but not the nam-
ing task, although the model can account for both.
However, the central aim of this paper is to investigate
the contribution of the sensorimotor features to improv-
ing the model�s lexical and grammatical learning.

In Experiments 1 and 2, we describe the empirical
collection of feature ratings for nouns and verbs, respec-
tively, and describe the results of several analyses per-
formed to verify that they are capturing an abstract
representation of the words� meanings. In Experiment
3 we describe simulations of a neural network model
using these features and trained with a large naturalistic
corpus of child-directed speech. We examine the extent
to which the inclusion of sensorimotor features improves
lexical and grammatical learning over a control condi-
tion, in an attempt to demonstrate the utility of feature
grounding for language acquisition. However, it is
important to note that in referring to ‘‘grammatical
learning’’ we are in fact only considering the simplest as-
pects of grammar, namely basic sequence learning.
Experiment 1—Generation of noun sensorimotor features

Developing a set of sensorimotor dimensions that
are plausible for 8- to 28-month-old infants was an
important first stage of this research effort. In our pre-
vious models of lexical grounding and acquisition of
grammar (Howell & Becker, 2001; Howell et al.,
2001), we used a more simplistic semantic feature repre-
sentation of words (Hinton & Shallice, 1991) that was
both artificial and confounded words� conceptual
semantics with ‘‘associative semantics,’’ the linguistic
relationships between words. We needed a more child-
appropriate set of semantic features. Of course,
developing these semantic features actually involves
two issues: one, collecting the ratings, and two, making
sure that the results of the ratings actually reflect realis-
tic early semantic relationships. If the collected ratings
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do not have plausible semantic cohesion, they cannot be
very useful in further work.

Method

To avoid having artificial, experimenter-created
semantic feature representations, we investigated the
McRae et al. (1997) empirically generated feature set.
However, of the thousands of features contained in that
set, many were non-perceptual (e.g., linguistically asso-
ciative), and few were common across many concepts.
To obtain an appropriate set of input features for a neu-
ral network model of child language acquisition, we re-
quired a more compact, concrete set of features that are
perceptual and motor in nature, and could reasonably
capture purely pre-linguistic knowledge. Thus, we nar-
rowed down the McRae et al. feature list to some 200
common and widely represented features. This list was
further condensed by converting each set of polar oppo-
sites and intermediate points to a single set of 19 polar-
opposite dimensions. For example, ‘‘small’’ and ‘‘large’’
became a single continuous dimension of size, ranging
from small (0) to large (10), and eliminating the need
for ‘‘tiny,’’ ‘‘medium,’’ ‘‘huge,’’ etc. The remaining 78
features which could not be unambiguously converted
to a set of polar opposites were retained as a condensed
list of scalar-valued dimensions, such as color (is_red) or
texture (has_feathers), where the numeric value indi-
cated the probability of possession of that feature by
that concept. We use the term �feature dimension� or �di-
mension� to refer to all 97 dimensions, however, since
when considered as components of a meaning vector
they each represent a spatial dimension in a 97-dimen-
sional space.

This resulting list of features was then reviewed by an
independent developmental psychologist, for accessibil-
ity to children of the age range in question (8–28
months), and any features that were not considered
developmentally appropriate were removed. For exam-
ple, ‘‘age’’ is not reliably perceived by children beyond
simply ‘‘young’’ or ‘‘old’’ (Dr. Laurel Trainor, private
communication, 2001) and so was removed.

The final list of 97 sensorimotor feature dimensions
(see Appendix A) was small enough to be feasible as in-
put for our neural network models, and broad enough to
be applicable to many concepts. Given this set of feature
dimensions, it was next necessary to obtain ratings of the
early concepts along each feature dimension. We used a
large sample of human raters to generate the featural
ratings for our early words. Our raters were undergrad-
uates at McMaster University who participated in this
experiment for course credit in an introductory psychol-
ogy course.

Participants were presented with the concepts and the
list of feature dimensions along which to rate them on a
computer screen. The display was presented via a web
browser, and responses were entered by filling in re-
sponse boxes on the display. Participants were given de-
tailed instructions (see Appendix A) as to how to make
judgments, and which anchoring points to use in assign-
ing numerical values. For example, in rating the size of
an object, the smallest item a child might know about
might be �pea,� while for adults it might be something
microscopic like �virus.� Thus, participants were specifi-
cally instructed to make judgments taking into account
the limited frame of reference that a pre-school child
would have, especially relevant for polar-opposite
dimensions such as ‘‘size.’’ Participants entered their
data as numbers between 1 and 10, which were later
scaled down to the 0–1 range for easier presentation to
neural network models.

The rating forms were administered over the Internet
as web forms. The data was checked carefully for outli-
ers. Three participants� data were excluded due to obvi-
ous response patterns (all 0�s, all 10�s, 1-2-3�s, etc.),
indicating insufficient attention given to the task. Rat-
ings were collected for 352 noun concepts from the Mac-
Arthur Communicative Development Inventory
(MCDI, Fenson et al., 2000) in 38 separate phases with
approximately 10 concepts each during winter, 2002.
The first two phases had 10 participants each; the rest
had 5 participants each, for a total of 200 participants.
Participants received course credit for participation so
long as the data were not obviously invalid as discussed
above The resulting ratings were then averaged across
participants yielding a single feature vector of size 97
for each concept, 352 in all.

Three forms of analysis were performed on these
newly created feature representations, in order to dem-
onstrate that they do capture important aspects of the
meanings of the words represented: a hierarchical cluster
analysis, a Kohonen self-organizing map, and a Euclid-
ian-distance-based categorical membership analysis.

Results

We analyzed the 352 averaged feature vectors in a
hierarchical cluster analysis using SPSS version 11.5,
to see whether our features captured our intuitive sense
of word similarity. The 352 concepts clearly clustered by
meaning, with subcategories merging nicely into super-
ordinate categories (see Appendix B). Animals are sepa-
rated from people, people and animals are separated
from vehicles and inanimate objects, etc. Thus, while
the high degree of variability between participants� rat-
ings was originally a concern, after averaging, the regu-
larity inherent in the feature vectors is quite reassuring.
To provide another view on the ratings, the ratings vec-
tors were fed into a Self-Organizing Map (Kohonen,
1982, 1995) neural network, which sought to group the
concepts topographically onto a two-dimensional space
based on their feature similarity. The resulting topo-
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graphic organization respects the semantic similarities
between concepts, showing intuitive groupings based
only on the sensorimotor features of concepts (see Fig.
1). Note, for example, the grouping of ‘‘creatures that
fly’’ in the top left corner, and the grouping of parts of
the body in the middle-left.

A more clearly defined measure of success is provided
by the categorical analysis. We formed category cent-
roids for each of the pre-existing categories of nouns
on the MCDI form from which the words were origi-
nally drawn. This was done by taking all of the words
that belonged to that category and averaging together
their feature vector. Then each and every word�s feature
Fig. 1. Self-organizing feature map of Experiment 1 feature vectors. E
presentation of that concept after training. Note the grouping of simila
similarity.
vector was compared to the centroids of each of the 11
categories represented, and the closest match indicated
into which category the word should fall. This was done
both with the target word included in the centroid gen-
eration process, and with it excluded (a more conserva-
tive approach). Results are very good, at 92.8 and 88%
accuracy, respectively (Chance performance would be
9.1%). See Table 1 for details.

Discussion

We believe all three analyses indicate the success of
the experiment. The hierarchical clustering analysis,
ach concept is written on the unit that responded most highly to
r concepts on nearby units, as well as the overall topography of



Table 1
Noun category agreement results feature vectors compared to centroids of categories drawn from MCDI

Category number Category name Inclusive accuracy Exclusive accuracy

1 Animals 0.8205128 0.8205128
2 Vehicles 0.9166667 0.75
3 Toys 0.9166667 0.8333333
4 Food and drink 1 1
5 Clothing 0.9285714 0.8928571
6 Body parts 1 0.862069
7 Small household items 1 1
8 Furniture and rooms 0.8484848 0.7878788
9 Outside things 0.9333333 0.8666667
10 Places to go 0.8636364 0.6363636
11 People 0.8461538 0.8461538

Overall 0.9283668 0.8796562
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while vast and somewhat difficult to interpret, shows
many clear separations of concepts, and consistent local
clusters of meaning. The SOM representation shows
clear clustering by meaning, with both fine-grained and
broader similarity structures across the map. Finally,
the categorical analysis provides a clear numerical mea-
sure of the goodness of fit of our features to the preex-
isting categorizations of these nouns, with 93%
accuracy of word to category. The sensorimotor feature
ratings thus capture much of the meaning of the con-
cepts, definitely enough to be useful as inputs to our lan-
guage learning model, and they certainly capture what�s
important for categorical reasoning.
Experiment 2—Generation of verb sensorimotor features

In this experiment we followed much the same meth-
odology as for Experiment 1, this time for verb features.
However, given that verbs correspond to events in the
world rather than to objects, the nature of verb features
was expected to be different from that for nouns. Also,
there was no pre-existing taxonomy of verb features
readily accessible in the literature, as there had been
for nouns (what we mean by verb features is different
from verb �classes,� the way verbs are usually grouped).
Therefore, our collection of verb features proceeded in
two steps. First we conducted a pilot experiment in verb
feature generation with human participants, and from
that we created a set of verb feature dimensions to be
rated in a web-based phase of the experiment exactly
as in Experiment 1.

Method

The pilot experiment was conducted with 12 under-
graduate participants at McMaster University (see
Appendix C for the instructions given to participants).
Participants completed a feature generation form for
some of the earliest (MCDI, Fenson et al., 2000), and
most prototypical (Goldberg, 1999) verbs, with the
objective being not complete characterization of any gi-
ven verb but rather the creative generation of a set of
feature dimensions which might be common to many
verbs.

While fully half of the features generated were unus-
able due to contamination by functional relationships
with corresponding nouns, associational relationships,
etc., there were sufficiently many perceptual and motor
features identified to allow us to create an initial set of
feature dimensions. From this beginning, we were able
to fill in missing complements of existing dimensions.
For example, several participants focused on limb
movement to define verbs, which is in line with some
existing models of verb definition in computer science
(see for example Bailey, Feldman, Narayanan, & Lak-
off, 1997). From this and considerations of bodily
motion and proprioceptive constraints in humans we
were able to generate a large primary set of joint-mo-
tion dimensions. We also included some other features
that had been identified by pilot participants, which
brought the total to 84 feature dimensions (see Appen-
dix C for a list)

A second group of 45 participants participated in the
rating phase of the verb experiment (see Appendix C for
the instructions given to participants). As in Experiment
1, they rated each verb on the list with a value between 0
and 10 on the 84 feature dimensions. Each participant
rated 10 of the concepts. We then converted these rat-
ings to the 0–1 range, which became the feature repre-
sentations for verbs used in the Experiment below. We
analyzed the results of the experiment (the feature rat-
ings) in the same three ways as in Experiment 1: a
hierarchical cluster analysis (see Appendix D), a self-
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organizing map (Kohonen, 1982, 1995), and a Euclidi-
an-distance-based categorical membership analysis.
The categories used in the latter analysis were drawn
Table 2
Verb category agreement results feature vectors compared to
centroids of categories drawn from MCDI

Verb category Percentage correct

Body-movements 60
Motion 83
Creation/destruction 64
Food-related 83
Possession and relocation 78
Change of state 55
Statives 78
Communicative 67
Perception 75

Overall 70

Fig. 2. Self-organizing map of the verb feature ratings. Note the group
drink/lick/taste and listen/say/talk as well as modes of locomotion su
from Levin (1993) and grouped together into superordi-
nate categories with the assistance of linguists Anna
Dolinina of McMaster University, and Silvia Gennari
of the University of Wisconsin – Madison. Nine catego-
ries were used, as can be seen in Table 2. Only the inclu-
sive methodology was used to create the category
centroids, based on the results from experiment 1.

Results

Overall, the meanings of verbs do not cluster as
coherently as do the meanings of nouns. Still, as can
be seen from the SOM, similar verbs do group together
in space (see Fig. 2). Note the grouping of ‘‘tongue-
verbs’’ in the top left, and movement verbs in the bottom
right, for example. Major trends in the cluster analysis
for verbs are less clear than for nouns, although the
analysis does find many intuitively reasonable group-
ing together of words involving similar motor activities such as
ch as slide/jump/go/walk/hurry.
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ings, such as take, bring, push, put, and move, for exam-
ple (see Appendix D).

Finally, the categorical agreement analysis, while not
as clear as that for the nouns shown previously, still
demonstrates a 70% overall accuracy of the target words
to their correct category. Chance performance would be
11.1%. Categorical performance by category is shown in
Table 2. The accuracies range across category, from 83%
for motion or food-related categories, to a low of 55%
for change of state verbs.

Discussion

The somewhat weaker clustering of our verb features
is consistent with the results of Vinson and Vigliocco
(2002), who also show that verbs generally do not cluster
very well. Their verb features were also human-gener-
ated, but they placed no developmental or sensorimotor
restrictions on the form of those features as we did in
this experiment. Nonetheless, it seems that verbs, or
pre-linguistic verb concepts, simply do not share as tight
a similarity space as nouns do, although the fact that
there were fewer verbs in Experiment 2 than there were
nouns in Experiment 1 may have an effect, as there is less
opportunity for featural similarity to become apparent.
Also, when examined by category, the verb accuracies
seem to be generally highest for the more concrete verb
categories, and lowest for the more abstract (e.g., change
of state). However, our features are still capturing
important aspects of the meanings of verbs, as can be
seen qualitatively in the hierarchical cluster analysis
and SOM, and quantitatively in the Category Agree-
ment analysis. An agreement rating of 70% is more than
sufficient for us to wish to use these features in further
experiments.

In Experiment 3, we investigated the contributions of
sensorimotor feature grounding, in both nouns and
verbs, to language learning in a neural network
simulation.
Experiment 3—A large corpus model of grounded

language acquisition

In previous work (Howell & Becker, 2001), we deter-
mined that adding an artificial set of semantic features
to an SRN improved word prediction dramatically
(18.5%–37.1%). However, in that experiment the word
representations were localist (a series of zeroes with a
single 1), while the feature representations were binary
distributed codes (a sequence of zeros and ones). It
was impossible to determine how much of the improve-
ment in word prediction was due to the simple increase
in the information content of the combined input repre-
sentation, rather than the inter-word similarity structure
inherent in the semantic features. In contrast, in this
experiment the word representation is a very long (140
elements) distributed representation of phonemic
features. The feature representations are smaller, 97-ele-
ment (noun) or 84-element (verb) vectors of scalar-val-
ued features. Also, as discussed below the control
condition features are matched for numerical range
and variability.

Additionally, in that previous model both the phono-
logical information and the semantic information were
presented as inputs to the network. Since we are arguing
that children have these early semantic concepts pre-lin-
guistically, it makes more sense to use the semantic fea-
tures as output targets instead of inputs. Children have
already formed internal representations of the features
of a concept by the time of initial language learning.
By using these features as output targets, rather than in-
puts, the network is forced to focus on the mapping of
words to meanings and therefore learning the associa-
tions between words and existing concepts, as well as
how those words predict each other in the speech
stream.

In this experiment, then, any benefit from the inclu-
sion of semantic information is thus expected to be due
to the statistical regularities inherent in the sensorimo-
tor feature information, beyond a simple increase in the
information content due to the use of distributed repre-
sentations. Specifically, we hypothesized that word pre-
diction, a measure of syntactic learning which is one
part of grammar (Elman, 1990), would improve with
sensorimotor grounding of nouns and verbs. Essen-
tially, meaningful semantics should improve syntactic
learning.

Method

We modified the Simple-Recurrent Network (SRN)
architecture to perform three separate tasks simulta-
neously, in three separate pools of output units (see
Fig. 3). A small common hidden layer and context
layer of 10 units each were used, to force the network
to develop an integrated internal representation
common to the three tasks. This may, in fact, be a
good analogue to children�s early learning, when atten-
tional and other resources are immature and very lim-
ited (Newport, 1990). A single input layer presented
whole-word phonetic representations of words in serial
order through the corpus. Each word was encoded as a
set of up to 10 phonemes using 140 input units. The
140-element word inputs represented 10 phonemic slots
each of 14 phonemic feature bits, without representa-
tion of word boundaries. The Carnegie Mellon Univer-
sity (CMU) machine-readable phonetic transcription
system and pronouncing dictionary was used to gener-
ate our phonetic representations of words (available at:
http://www.speech.cs.cmu.edu/cgi-bin/cmudict). Each
phoneme was uniquely mapped to a set of 14 bits

http://www.speech.cs.cmu.edu/cgi-bin/cmudict


Fig. 3. Modified SRN architecture, including standard SRN
hidden layer and context layer, standard linguistic (word)
prediction output, and novel noun feature output and verb
feature output. The linguistic input is a whole-word phonetic
representation of up to 10 phonemes. The Noun and Verb
feature targets are meant to be an abstract representation of
pre-linguistic sensory and motor-affordance semantics.
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representing articulatory dimensions of the phonemes.
Words shorter than 10 phonemes had their rightmost
slots padded with 14 zeros, while longer words were
truncated.

The Linguistic Predictor output layer performed
the word prediction task: predicting from the current
input word what the next word would be. At each
time step, its task was to predict the phonemic repre-
sentation of the input word at the next time step. The
task for the remaining outputs was to produce the
sensorimotor features of the current word. The Noun
Features layer had output targets that represented the
sensorimotor features for the current word, as created
in Experiment 1. The Verb Features layer had output
targets that represented the sensorimotor features for
the current word, as created in Experiment 2. When
the current input was not a noun or a verb (respec-
tively), a vector input of all 0�s was presented at that
layer, and no backpropagation of error was performed
for that layer.

Employing the sensorimotor features as output tar-
gets was partly designed to eliminate the confound of
representational richness involved in using additional in-
puts, as discussed above. Also, the fact that the network
is producing sensorimotor noun and verb features at the
output means that we can examine the ability of the net-
work to generate the correct features for any given word.
This gives us a measure of vocabulary acquisition, or
lexical learning, both during learning and when testing
generalization performance on novel words presented
at the input.
Corpora and training schedule

We used a large (8328 word) selection of speech
drawn from the CHILDES database (MacWhinney,
2000) transcribed from mother–child playtime interac-
tions. This corpus was created by appending all of the
Bates FREE20 data sets (Bates, Bretherton, & Snyder,
1988; Carlson-Luden, 1979) from the CHILDES data-
base into a single body of text without pauses or sen-
tence markers.

Two conditions of the networkwere run to simulate an
experimental condition and a control condition. The
Experimental condition used the full network as described
above. The Random Control network used the same
architecture as the Experimental condition, but replaced
the human-generated (and meaningful) semantic features
with randomized permutations of that same set of fea-
tures. This condition is intended to control for sheer num-
ber of connections and input vector magnitudes. The
randomization was performed by iteratively swapping
the value at each position on the 97 element vector with
that of another random position. When all words� repre-
sentations had been randomized, each word�s entire ran-
domized feature representation was then swapped with
another word�s representation. This manipulation mini-
mizes any featural similarity between related words.

Ten networks were run in each condition, for a total
of 20. Each network was run for 200 epochs using the
SRNEngine simulation package (Howell & Becker,
2005). Training used the back-propagation of error
learning algorithm (Rumelhart, Hinton, & Williams,
1986). Rather than running these large networks to
asymptotic performance, we simply ran them for a fixed
period (200 epochs) within which grammatical predic-
tion began to approach reasonable levels of perfor-
mance. Due to the computational demands of the
process, the networks� word prediction (grammatical)
accuracy was calculated and recorded only at 50 epoch
intervals. The network used a Euclidian-distance-based
output rule to convert its output activations to a word
label; thus every time step resulted in a discrete word
prediction, as opposed to any sort of phonological blend
state. Comparison of this word to the target word pro-
duced the accuracy measure.

This �exact prediction match� criterion is quite conser-
vative. The predicted word has to be the exact target
word expected, or it is incorrect. Thus, we also used a
second accuracy measure, a more generous (and argu-
able more accurate as a measure of grammatical learn-
ing) ‘‘categorical match’’ criterion, where the predicted
word only had to be in the same grammatical category
as the target word. All words in the corpus were divided
into 1 of 12 grammatical categories, which included:
adjective, adverb, conjunction, determiner, other, noun,
possessive, preposition, pronoun, meaningless, and verb.
The inclusion of this measure is to guard against the pos-
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sibility that our exact match criterion is too conservative
to have enough power to detect a difference between the
Experimental and Control Conditions.

Also, as an analogue to lexical learning, we analyzed
the data from the other two output layers, the Noun
Feature encoding accuracy and the Verb Feature encod-
ing accuracy, to see if there was any difference in the
accuracy between Experimental and Control conditions,
and if there was any relationship to the frequency of the
word in the corpus.

Results

The results show a small but significant difference in
word prediction accuracy (7.5% vs. 8.6%) between the
two conditions (see Fig. 4). Using the exact match error
criterion, the difference between the two conditions at
epoch 200 is significant (t test at epoch 200, p = .017,
df = 18). The percentage difference between the two con-
ditions is 13%. Also, the gap between the two conditions
is wider in the later epochs than in the earlier ones. In-
deed, a repeated measures ANOVA on the data from
epochs 150 and 200 yields a significant interaction effect
of training by condition (p = .034, df = 18).

Using the categorical match error criterion, the mean
accuracy of the Experimental group rises to 0.185, the
control group to 0.171. The size of the difference is
0.014, or an 8.2% difference between the two groups.
The difference under this error criterion is also signifi-
cant, (t test at epoch 200, p = .035, df = 18). Due to
the processing demands of calculating this error crite-
rion, it was only calculated for the final epoch of
training.
Fig. 4. Mean word prediction performance for Experiment 3. The n
standard error.
Noun encoding accuracy is also significantly different
(approximately 11% difference) between the two condi-
tions after 200 epochs (t test at 200 epochs, p = .0344,
df = 18), with the sensorimotor feature condition being
superior to the random features condition (see Fig. 5).
The difference in verb encoding accuracy was not signif-
icant, however (p = .120, df = 18).

To examine further the trajectory of performance, we
ran one of the Experimental condition networks above
(chosen at random) for a total of 500 epochs. At this
point, noun and verb grounding were quite good, as
can be seen from Table 3 below, although based on past
experience accuracy could rise as high as 90% with fur-
ther training. The network did not learn to accurately
produce sensorimotor features for any noun that oc-
curred fewer than 4 times in the corpus, nor for any verb
that occurred fewer than 5 times. Feature production
accuracy for both nouns and verbs was correlated highly
with the frequency of the word in our training corpus
(nouns, r = .7353, verbs, r = .6828). Word Prediction
accuracy was also highly correlated with the frequency
of the target word (r = .6266). This is not surprising in
either case, since the ability of the network to learn a
pattern is dependent upon how often it sees it.

Discussion

We expected that this experiment would demonstrate
the advantage of including meaningful features in the
word learning and word prediction process, and this is
exactly what we found. While the absolute prediction
accuracy of the networks is not yet very good, there is
a small but significant difference in prediction accuracy
umber of networks in each condition is 10. Error bars indicate



Fig. 5. Noun and Verb feature encoding accuracy from Experiment 3. These two output layers were performing a mapping from the
phonetic features of a word to the semantic features of a word. The number of networks in each condition is 10. Error bars indicate
standard error.

Table 3
Output accuracy from sample network at 500 epochs, during training

Noun features encoding Verb features encoding Word prediction

Accuracy 65.535% 75.251% 28.030%
Number of items 60 grounded nouns in this corpus 49 grounded verbs in this corpus 529 words in this corpus total
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between the two conditions at the completion of
training.

Using the exact match error criterion, a difference of
13% in word prediction accuracy (a simple measure of
grammar learning abilities) is evident at the final point
of training, and the difference between the two condi-
tions� average accuracy curves is increasing over the
latter portion of training, as demonstrated by the repeat-
ed-measures ANOVA.

The categorical match error criterion produces a sim-
ilar result (8.2% difference between the two conditions)
at the final epoch of training, and is also significant.
However, given that using the exact match measure is
much easier to calculate than the categorical match mea-
sure, and does not involve issues such as the choice of
the right level of grammatical categories to use, etc., it
seems appropriate that we have been using the more
conservative exact match grammatical accuracy mea-
sure. Still it is interesting to see that the results do not
depend on the choice of grammatical accuracy criterion.

Also, the ability of the network to map the phoneti-
cally presented word inputs to semantic features (an
analogue of lexical learning) is significantly different be-
tween the two conditions, at least for nouns. The fact
that this effect was not significant for verbs may be
due to the fact that fewer of them were grounded in
our training corpus (60 nouns versus 49 verbs) and the
fact that the network has more exposure to nouns (since
most simple sentences contain only one verb, but several
nouns). Similarly, the fact that overall, the accuracy for
verbs is better than nouns (a counterintuitive result) is
likely related to the relative sparseness of the multidi-
mensional space in which the verbs are represented by
their features. When the network output is forced via
the Euclidian-distance decision rule to select one verb
form as its match, there are fewer neighbors in the verb
space, and greater base likelihood of selecting the correct
one than in the noun feature space.

Overall, these results demonstrate the ability of sen-
sorimotor features to improve both ‘‘lexical learning,’’
the process of mapping word forms to conceptual repre-
sentations, and a simple aspect of ‘‘grammatical learn-
ing,’’ the process of sequence learning.

Of course, it was also important to simply show that
the network was able to perform the task of producing
sensorimotor features at output that correspond to the
meaning of the word presented phonetically at
input. This finding will be the basis for further studies
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examining the potential of this network to exhibit a
‘‘propagation of grounding’’ effect—the ability of the
network to learn to produce meaningful features for no-
vel, ungrounded word forms.
General discussion and conclusions

The preceding experiments (Experiments 1 and 2)
have demonstrated that representing concepts in terms
of sensorimotor features captures important aspects of
the semantic meaning of those concepts, and that this
knowledge is structured in meaningful ways (although
this is clearer for nouns than for verbs). We have also
shown (Experiment 3) that the inclusion of these senso-
rimotor features as semantic representations of words in
a model of language acquisition can improve perfor-
mance on both lexical learning (11% difference for
nouns) and grammatical learning (13% difference).
These results demonstrate that having sensory and mo-
tor knowledge of objects and events in the environment
is a significant advantage when trying to acquire lan-
guage for the first time, for networks and presumably
for children.

We can characterize these results partly in terms of
the artificial language learning literature, as well as in
relation to results from other language acquisition mod-
els investigating other language cues (e.g., prosody
Christiansen, Allen, & Seidenberg, 1998). In performing
its word prediction task (our �syntax� task) our network
essentially has two sources of information upon which
to operate, word form (represented phonologically)
and sensorimotor semantics. Research on the effects of
multiple cues during artificial language learning indi-
cates that having at least one other cue in addition to
the transitional probabilities of word symbols increases
the learnability of grammatical classes whether this cue
is linguistic or extralinguistic (e.g., McDonald & Plau-
che, 1995).

In our network, however (and contrary to the ran-
dom letter strings often used in artificial language learn-
ing experiments), the word representation is more than
just an arbitrary symbol, it is a full phonological repre-
sentation. Given that aspects of phonology can serve as
linguistic markers, it was possible that our word forms
served both as the symbols to be sequenced and a lin-
guistic cue to their grammatical usage. Thankfully, the
random condition in Experiment 3 controls for this pos-
sible cue (as it is the same in both experimental and ran-
dom conditions) leaving us confident that the effect we
found is in fact due to the inclusion of sensorimotor
semantics (an arguably extra-linguistic cue in this case).
Of course, the degree of transparency, or salience, of the
multiple cues involved is also relevant (McDonald &
Plauche, 1995). In our experiment, the transparency of
the semantic representations is very high, as they are
an explicit target of network operation. Phonological
markers, if any, are much less transparent due to their
relatively hidden status within the word forms. Nor-
mally, almost all learning in such multi-cue situations
of differential transparency is directed towards the
highly transparent cue (McDonald & Plauche, 1995),
which again leaves us confident that the difference we de-
tected was due to the sensorimotor semantic
representations.

This is not to say that we could not to extend our
model to incorporate other learning cues, profiled in
such a way as to be easily combined with semantic cues.
Indeed, this notion of multiple interacting cues is exactly
what researchers like Seidenberg and MacDonald (2001)
advocate. One likely cue that would be a good candidate
for inclusion in our model would be prosody or syllabic
stress (e.g., Christiansen et al., 1998)

Another important caveat is that even though Exper-
iment 3 used a corpus which was a concatenation of
transcribed mother-to-child speech taken from the
CHILDES database (Bates et al., 1988; Carlson-Luden,
1979; MacWhinney, 2000), only 60 nouns and 49 verbs
were actually represented in our vocabulary of 352
grounded early nouns and 90 grounded early verbs.
Why do so few of the corpora�s 529 words overlap with
our grounded words? One possible reason is related to
the situation in which the speech was originally elicited;
a relatively constrained joint-play situation rather than
natural in-home childhood activities, where more of
the words from our MCDI set would presumably be
encountered and discussed. Even so, the fact that so
few words were grounded in sensorimotor features is
not a problem for our account. Consider our semantic
representations as a cue to grammatical learning again,
as discussed above. Had more of the corpora�s vocabu-
lary of 529 words been grounded, the usefulness of the
semantic cue to the network in performing word predic-
tion would have been more obvious. As it was, most
words had no semantic targets, making it harder for
the network to learn this cue. This is undoubtedly part
of the reason for the small size of the effect we found.
Had more words been grounded, the effects of including
the sensorimotor features would likely have been much
larger and more obvious.

These experiments were performed using the most
naturalistic corpus we could find, which was intended
to allow for good input representativeness (Christiansen
& Chater, 2001) on the part of the model, the idea being
that it is receiving the same sort of input that the child
might, and so the model�s results would be extendable
more readily to the case of child language acquisition.
This goal certainly still holds; we can be confident that
this effect of pre-linguistic conceptual knowledge on
grammatical learning should appear in children as well
as the network. At an extreme level, it is obvious that
it has to. If a child has no meaning representations for
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any of the words that he or she is hearing in speech, then
the grammar of the language will be impossible to learn.
This is McClelland�s ‘‘learning a language by listening to
the radio’’ criticism (Elman, 1990). Thus, the more
words whose meaning is known that occur in the speech
stream, the more the grammar is inferable, and the more
easily that novel words can be understood. Experimental
evidence of this process has been discussed earlier (Gil-
lette et al., 1999).

However, the naturalistic corpus that we used for
these simulations was not a very grammatical corpus!
Upon examination, the mother-to-child speech contains
very few proper sentences, and very many partial sen-
tence fragments, repetitions of words, attention-eliciting
verbal behaviors (e.g., ‘‘look at this, what is this,’’ etc.),
and as mentioned previously, only a minority of the
words were grounded in sensorimotor features (as dis-
cussed above, this may be related to the nature of the
original somewhat constrained joint-play scenario from
which the speech was transcribed, and thus we make
no claims regarding the overall implications of �mother-
ese� for grammar learning). Thus, while the use of this
�naturalistic� corpus may make us confident in generaliz-
ing from the network�s behavior to that of children, it
makes it very difficult to produce that network behavior
in the first place, hence the low overall accuracy found in
Experiment 3. In fact, by including only mother-to-child
speech, this training corpus is much more impoverished
than what children would be exposed to, since children
also overhear more grammatical adult-to-adult speech.
We would thus expect larger grammatical differences be-
tween experimental and control conditions to be evident
with training corpora that were more grammatical.

Of course, the other interpretation is that the lack of
overlap between the 529 words of our mother to child
corpus and the 442 words of our sensorimotor semantic
representations actually calls our effect into question.
One might argue that this lack of overlap shows that
children actually do not receive enough grounded input
to make it a viable cue for language learning. There are
several indications that this is not the case, however.
One is that in pilot work, we observed that the more
words in the training corpus that were grounded, the lar-
ger was the effect of sensorimotor features on language
learning. This extends to the point of arguably easiest
word learning, when all other words in a situation are
known and grounded and only one is not. As discussed
before, this is essentially the ‘‘fast-mapping’’ paradigm
of word learning (Bloom, 2000), although we are not
claiming that networks can do ‘‘fast-mapping’’ per se,
merely that the behavior that we see in the network is
a less extreme form of the phenomenon, essentially just
a degree of facilitation of learning. Furthermore, in pre-
liminary work on the propagation of grounding effect
using simpler semantic representations, we found that
the larger the percentage of the words in the corpus that
were grounded, the more likely a novel word was to ac-
quire an appropriate meaning. As discussed below, this
experiment has not yet been conducted on these partic-
ular rich semantic representations, however. Further,
as discussed above, the MCDI words are primarily
words that children would encounter in normal daily
home life, and should be more fully represented in
speech taken from such a context. In any event, we be-
lieve that the combination of these factors serves to sup-
port our interpretation of our results.

Sensorimotor features can also be used in otherways in
models of language. They might be particularly useful in
modelling in detail the process of word learning. If as
Bloom (2000) suggests, children learn the meanings of
words through attention towhat the caregiver is attending
to, then combining feature representations with pho-
neme-by-phoneme speech representations might be a net-
work analogy. This would help the network to learn to
bind individual phonemes intowords, using the constancy
of sensorimotor features (as an analogue to focused joint
attentionwith a caregiver) to determine that all these pho-
nemes apply to the same perceived object. In unpublished
work, we have begun to examine exactly this.

Another advantage of sensorimotor features relates
to word sense disambiguation: this kind of meaning rep-
resentation may be used to disambiguate multiple senses
of a word encountered in text, through the operation of
feature prediction in concert with word prediction. That
is, if the network is predicting the word ‘‘bank’’ next, by
examining the features it is predicting at the same time
we might be able to tell whether it means to output ‘‘a
place to store money’’ or ‘‘the edge of a river’’. In fact,
it has been suggested (Ken McRae, Private Communica-
tion, 2004) that this is arguably the most interesting
usage of these features.

Now that we have a set of explicitly grounded senso-
rimotor features for the earliest words, a question natu-
rally arises: do we need to derive featural ratings for
every concept that the network is exposed to? Fortu-
nately, that should not be necessary. As discussed previ-
ously, evidence indicates that only the child�s earliest
words are fully grounded in sensory experience (Gillette
et al., 1999); in fact it is the early words� very imageabil-
ity and accessibility to observation that leads them to be

the first words generally learned by children. As lexical
learning progresses, less and less imageable (i.e. more
abstract) words are experienced and learned. Also, the
learner is exposed to novel words in speech or text that
are not directly grounded in immediate sensory experi-
ence. Both of these sorts of words can be grounded only
indirectly by association with other more imageable
words in the context. Therefore, if we empirically gener-
ate the sensorimotor features for the most imageable,
earliest words in children�s lexicons, we can reasonably
expect that later words will be effectively grounded via
their relationships to these earlier words. In the neural
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network model, novel words presented to the model
without accompanying sensory input should begin to eli-
cit the appropriate sensorimotor features due to similar-
ities to other concepts or words that share context or
usage (see Howell et al., 2001; for a detailed discussion).
This is our ‘‘propagation of grounding’’ process. While
the present work does not directly investigate this pro-
cess, the above demonstration of the contribution of
sensorimotor features to lexical and grammatical learn-
ing was a necessary first step. We are now experimenting
with networks designed to investigate this propagation
of grounding more directly.
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Appendix A. Instructions and dimensions for Experiment 1 (Excerpts from subject instructions)

On the following pages are a series of various concepts or words, such as ‘‘dog,’’ or ‘‘kettle.� For each of the concepts/words, there is
a list of features. Please rate each concept on each feature on a scale of 0 to 10. Try to picture the object or concept mentally as you are
making your rating, including its sounds, smells, motions, etc. . . . you should try to limit yourself to the knowledge of the world that an
average pre-school child would have. For example, for size, do not compare the concept in question to a microscopic bacteria or to a
mountain. You might limit your comparison group to anywhere from the size of a pea (tiny = 0) on up to the size of a house (extremely
large = 10), for example. . .
Noun semantic dimensions or features
Size
 is_crooked
 makes_animal_noise

Weight
 is_curved
 sings

Strength
 is_cylindrical
 talks

Speed
 is_flat
 has_4_legs

Temperature
 is_liquid
 has_a_beak

Cleanliness
 is_rectangular
 has_a_door

Tidiness
 is_round
 has_a_shell

Brightness
 is_solid
 has_eyes

Noise
 is_square
 has_face

Intelligence
 is_straight
 has_fins

Goodness
 is_triangular
 has_handle

Beauty
 has_feathers
 has_leaves

Width
 has_scales
 has_legs

Hardness
 has_fur
 has_paws

Roughness
 is_prickly
 has_tail

Height
 is_sharp
 has_teeth

Length
 is_breakable
 has_wheels

Scariness*
 made_of_china
 has_whiskers

Colourfulness
 made_of_cloth
 has_wings

is_black
 made_of_leather
 is_annoying

is_blue
 made_of_metal
 is_comfortable

is_brown
 made_of_plastic
 is_fun

is_gold
 made_of_stone
 is_musical

is_green
 made_of_wood
 is_scary *
is_grey
 climbs
 is_strong_smelling

is_orange
 crawls
 is_young

is_pink
 flies
 is_old

is_purple
 leaps
 is_comforting

is_red
 runs
 is_lovable

is_silver
 swims
 is_edible

is_white
 breathes
 is_delicious

is_yellow
 drinks

is_conical
 eats
* Note that due to an oversight, is_scary and scariness are both included in this set. We do not expect that this has any effect on the
results.
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Instructions for Part 1. Please enter a value between 0 and 10, with 5 being in the middle of the two opposites (first 19 dimensions,
Size—Colourfulness)

Instructions for Part 2. Please enter a value between 0 and 10. A value of 10 means the feature is ALWAYS true or ALWAYS
present, a value of 0 means that it is NEVER true or present, and a value of 5 means that it is true about 50% of the time, or for
50% of the instances of that concept. Example: if you think that 60% of the time an apple is red, then rate apples a 6 on is_Red.
Appendix B. Sample of noun cluster analysis
Appendix C. Forms and instructions for Experiment 2

C.1. Pilot study—verb features generation

Please list as many features/aspects of the following verbs as you can. There is no rush, please take the time to think about and
visualize (if possible) the word in question. Try to focus on physically observable aspects of that verb, rather than on other words,
nouns, etc, that it tends to occur with. A ‘‘feature’’ does not have to be a single word, so for ‘‘fly’’ the features might be something like:

Requires wings
Goes fast
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Travels from point a to point b
Moves through the air
Etc. . .

(Verbs listed for rating included prototypical �light� verbs such as go, put, move, hit, etc.)
C.2. Experiment 2—Excerpts from subject instructions

On the following pages are a series of various actions or verbs, such as ‘‘hit,’’ or ‘‘run.’’ For each of the actions/verbs, there is a list
of features. Please rate each verb on each feature on a scale of 0 to 10. Try to picture the object or concept mentally as you are making
your rating. . . In general for these ratings, you should limit yourself to the experience that a pre-school child might have, that is, very
basic physical understandings of themselves and their actions. . ..

Verb semantic dimensions or features
Joint motion
Toes
 eyes

ankles
 eyebrows

knees
 nose

hips
 mouth

torso
 lips

shoulders
 tongue

elbow
 requires a specific overall bodily position?

wrist
 degree of overall body contact involved

fingers
 horizontal motion involved

neck
 vertical motion involved

head
 optimum size of actor

face
Sensory perceptions/physical observations
noisiness (0 = silence)
 perception—Visual

perception—Auditory
 speed (10 = fastest)

perception—mental
 suddenness (0 = totally expected)

perception—Smell
 tightness (0 = no hold)

perception—Taste
 agitation (physical)

perception—Touch
 balance (0 = totally unsteady)
Physical states
decreases agitation
 increases energy

decreases energy
 increases hunger

decreases hunger
 increases thirst

decreases thirst
 increases tiredness

decreases tiredness
 reactiveness (0 = unreactive to stimuli)

increases agitation
 tension (0 = completely relaxed)
Mental state features
aggression (0 = complete passivity)
 pleasurable (0 = not at all)

attention (0 = oblivious to this stimulus)
 painful (0 = not at all)

awareness (0 = unaware of anything)
 purposeful (0 = completely unintentional)

control (0 = completely accidental)
Temporal features
starts something else
 periodic action (0 = single action)

ends something else
 time pressure involved (e.g., verb ‘‘race’’)

duration of action (0 = instantaneous)
Physical requirements/characteristics
amount of contact involved between actor and object
 requires physical object

involves container/containing
 requires a surface

involves supporting something
 strength involved

forcefulness
 involves a trajectory from source to goal
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Appendix C (continued)
Physical effects
interrupts a path or trajectory
 creates disorder/untidiness

causes damage
 creates order/tidiness

distance typically
 closes/closes down

conjoins things
 opens/opens up

divides things
 change is involved (0 = totally static)

consumes (e.g., uses up like in ‘‘burn’’)
 transference of something

creates (something new)
 assembles things

destroys
 disassembles things

displaces other object (and takes its place)
Appendix D. Subset of verb cluster analysis
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