
Improving Associative Memory Capacity:
One-Shot Learning in Multilayer Hopfield Networks

Proceedings of the 19th Annual Conference of the Cognitive Science Society,p442-447, 1997

Arnold Liwanag (LIWANAG@HYPATIA.MCMASTER.CA)
Suzanna Becker (BECKER@HYPATIA.MCMASTER.CA)

Department of Psychology
McMaster University
1280 Main St. West

Hamilton Ont. Canada L8S 4K1

Abstract

Our brains have an extraordinarily large capacity to store and
recognize complex patterns after only one or a very few expo-
sures to each item. Existing computational learning algorithms
fall short of accounting for these properties of human memory;
they either require a great many learning iterations, or they can
do one-shot learning but suffer from very poor capacity. In
this paper, we explore one approach to improving the capacity
of simple Hebbian pattern associators: adding hidden units.
We propose a deterministic algorithm for choosing good target
states for the hidden layer. In assessing performance of the
model, we argue that it is critical to examine both increased
stability and increased basin size of the attractor around each
stored pattern. Our algorithm achieves both, thereby improv-
ing the network’s capacity to recall noisy patterns. Further,
the hidden layer helps to cushion the network from interfer-
ence effects as the memory is overloaded. Another technique,
almost as effective, is to “soft-clamp” the input layer during
retrieval. Finally, we discuss other approaches to improving
memory capacity, as well the relation between our model and
extant models of the hippocampal system.

Introduction

Human episodic memory (Tulving, 1972) is a puzzling phe-
nomenon to many modellers. Our brains have an extraor-
dinarily large capacity to store and recognize patterns such
as pictures (Standing, 1973), for example. This remarkable
capacity must be reconciled with the fact that we can learn a
complex item such as a picture or an association between a
pair of unrelated words after only a single exposure (one-shot
learning). How could we model such a system? Existing com-
putational learning algorithms appear to be inadequate. Con-
nectionist learning procedures can be grouped into two broad
types: 1) those that have high capacity but require many learn-
ing iterations, and 2) those that have low capacity but can do
one-shot learning. Models of the first type are able to extract
statistical regularities or hidden variables gradually from the
input; these include back-propagation networks, Boltzmann
machines and competitive learning networks (for a review of
these and other connectionist learning procedures, see Hinton,
1989). Models of the second type rapidly memorize the input
without recoding it into hidden features; these include linear
pattern associators (e.g., Anderson, 1972; Kohonen, 1972),
Hopfield networks (Hopfield, 1982) and convolutional mem-
ory models (e.g., Murdock, 1982; Eich, 1982; Humphries
et al., 1989).

Various attempts have been made to improve the capacity of
single-layer associative memory networks (see the Discussion
section). The approach taken here is to devise a principled
way to train a memorizing device with hidden units. Our
starting point is the Hopfield network. We retain the critical
features of a Hopfield network: symmetric connections, sym-
metric Hebbian learning,1 and Hopfield’s activation dynamics
for networks with real-valued units (Hopfield, 1984). With
these features, the network will always settle into an attractor
state.2 Hopfield networks are popular among theoreticians
because of their ease of analysis: they are now well under-
stood with respect to their storage capacity and convergence
properties. They are also appealing to many cognitive mod-
ellers because of their apparent similarity to human episodic
memory: they can recall patterns after only a single exposure
using a Hebbian learning rule, and they are capable of retrieval
from partial or noisy cues (pattern completion). However,
their capacity is extremely low. The number of patterns re-
called nearly correctly as a proportion of the number of units
is about 0.15. Further, as the memory is loaded beyond this
point, performance deteriorates catastrophically. These are
certainly not typical characteristics of human memory.

The Model

The solution explored here is to add hidden units to a Hopfield
network, so that the network can encode hidden or latent
variables and thereby improve its capacity. The problem is
then how to adapt the weights to the hidden units. An obvious
idea is to add a hidden layer with random initial weights,
allow the hidden layer units to settle to “random states”, and
then simply apply one-shot Hebbian learning as in the usual
Hopfield network. If the hidden layer states are truly random
– or nearly so, this should improve the capacity because it
is equivalent to increasing the input dimensionality, while
making the input patterns more nearly orthogonal. However,
we have found that this leads to even worse capacity. This is
likely because 1) the hidden layer states are not really random,
and 2) the Hebb-rule encourages them to encode features

1In symmetric Hebbian learning, the weight change on the con-
nection from unit A to unit B, and also on that from unit B to A, is
proportional to the product of the two units’ activations

2An attractor state has the desirable property that it is stable;
i.e., applying the state update rule to any unit leaves it’s activation
unchanged. Moreover, if the network is close to an attractor state,
further state updates will tend to drive it into that attractor. This
enables the network to perform error-correcting pattern retrieval.



External input

Adaptive weights, sparse connectivity
Adaptive weights, full intra-layer connectivity
Fixed weights, one-to-one connections

Hidden Units

Input units

Figure 1: The network architecture. External input connections
implement “soft-clamping” (see text); all other connections are sym-
metric. Input-to-hidden connections are involved in modulating the
plasticity in the hidden layer.

common to many patterns, thereby leading to more incorrect
retrievals (i.e., spurious attractors or “blend states”).

The idea behind our approach is that the hidden layer should
learn to correct for coding errors at the input layer. This should
help to create stable attractors out of the input patterns. Fur-
ther, the attractors should be widened so that the network is
tolerant to noise in the input. We now describe our network
architecture and training procedure. A key feature of our ap-
proach is a deterministic scheme for choosing the target states
of the hidden layer by minimizing input frustration so that
performance improves dramatically. Another critical feature
of our model is sparse hidden layer connectivity. We first
describe the network architecture (shown in Figure 1), and
then the procedure for hidden state initialization and learning
(summarized in Table 1).

Sparse input-to-hidden-layer connectivity: Each hidden
unit should be responsible for the cleanup of only one or
a few input units’ activities. The hidden layer is therefore
randomly and sparsely connected to the input layer, and these
connections initially have small uniform, positive weights.

Sparse hidden-to-hidden-layer connectivity: If each hid-
den unit were fully connected to every other hidden unit,
the learned associations within the hidden layer would simply
mirror those of the input layer. Very little improvement in
capacity would be expected in this case. On the other hand, if
each hidden unit is connected to a small number of other ran-
domly chosen hidden units, it should learn to predict the input
from what is approximately a random feature of the input.

Hidden unit state initialization: Each time an input pattern
is presented to the network, the hidden unit states are first
initialized to zero, and then synchronously updated for a single
time step. Thus, their initial states depend only upon the input
layer activations, and not on other hidden unit activations.
(Subsequent to learning, when the memory performance of

the network is evaluated, the entire network’s states would be
updated at this point until they stabilize.) Next, their states are
thresholded at zero to produce binary states of 1 or -1. These
states are then refined as described below to produce the final
hidden layer target states.

Frustration minimization: Hopfield’s state update equations
allow the network to settle to a stable state (an attractor), by
minimizing the following energy function:

� � �
0 �5 �

�
�
� ��	�
� ��	�
� � 
� ����

If an input pattern is presented to the network but that state
is unstable, the network will move away from that state and
settle into the wrong attractor. We therefore want the net-
work to build attractor states out of the input patterns. Thus,
our goal for the hidden layer is to form representations that
compensate for instabilities in the input layer, and correct for
potential coding errors. This motivates the following scheme
for adjusting the initial hidden layer states to produce the fi-
nal hidden layer target states: We minimize the input layer
frustration. An input unit is in a “frustrated” state when its
net input is of opposite sign to its external input. In this case,
the input unit sends a modulatory signal to its hidden units,
alerting each hidden unit that it is frustrated. Each hidden unit
can then evaluate whether it is contributing to the input layer’s
frustration, and reverse its own state if appropriate. Our al-
gorithm for selecting hidden layer target states follows the
gradient of the energy for frustrated input units. This energy
measure corresponds to the energy equation defined above,
with � indexing over frustrated input units and � indexing over
all units.

Weight updates: Once the states of the hidden units have
been determined, the one-shot, symmetric Hebbian learning
rule is then applied. This minimizes the energy in the entire
network to make an attractor out of the current global network
state (including both input and hidden layer units).

Table 1. The Learning Phase
1. Initialize modulatory connection weights to 1.
2. Initialize all other connection weights to 0.
3. For each of the � input patterns,

3.1 Clamp input layer states to external inputs.
3.2 Set hidden layer states to zero.
3.3 Do 1 synchronous update of hidden layer states.
3.4 Threshold hidden layer states to get -1,1 states.
3.5 Improve hidden states to get final target states:

3.5.1 For each input unit �,Compute total input, �
�� , from all layers.
If frustrated (i.e. ��	�
� � �
�� � 0),

For each hidden unit � that input � projects to,
Send a modulatory signal, � �� :� �� �

��	�
� � � 
� ����3.5.2 For each hidden unit � ,
If hidden unit is frustrating the input
(i.e. ��	�
� � � � � �� � 0),

Reverse this hidden unit’s state.
3.6 Apply one Hebbian learning step to all weights:

∆� 
� ����
�

1�� ��	�
� ��	�
�



Measuring the trained network’s performance

Soft-clamping the input layer: Once the network’s weights
have been trained, it can then be tested on its ability to re-
call or recognize test patterns, presented as external input to
the network. Geoff Hinton (personal communication) sug-
gested to us that one reason the Hopfield network recalls so
few patterns correctly may be that the input is only made
available for a single time step. As the input units’ states are
updated, they are free to forget completely their initial states.
Thus, the final states of the units after settling may be very far
from the external input pattern. A quick fix for this problem
is to provide the external input to each unit as a constant input
source while the input unit states are updating. This scheme
been used elsewhere (e.g. the BSB model, Anderson, 1995,
Chapter 15) although, to our knowledge, its effect on capacity
has not been reported previously. It is sometimes referred
to as soft-clamping. To implement this idea, we provided
each input unit with an extra incoming link with a positive
connection weight (see Figure 1).

Measures of Capacity: Two capacity measures are com-
monly used in the literature: 1) The absolute capacity is
the proportion of patterns that can be recalled exactly, and
2) the relative capacity is the proportion of the training pat-
terns that can be recalled nearly correctly. We used the latter,
with a 98% correctness criterion. We tested the network on
both noise-free patterns (identical to the training patterns) and
noisy versions of the training patterns. The former case is
analagous to a recognition memory test, while the latter is
analagous to cued recall. Table 2 summarizes the procedure
for testing the network. In the next section, we summarize the
simulations we have performed with this model.

Table 2. The Test Phase
For each input pattern,

1. Initialize input layer states and external
(soft-clamped) inputs according to the input pattern.

2. Initialize hidden layer states as in the learning
phase (steps 3.2 and 3.3 in Table 1).

3. Allow the entire network to settle to equilibrium.
4. Retrieval is counted as correct if at least

98% of the input units are in correct states.

Simulations

Procedure

All simulations were run on run on Silicon Graphics Indy
workstations. The training patterns were random vectors of
binary numbers that had an equal probability of being 1 or
-1. Five different random training sets were created for each
input layer size and training set size. Hence, simulations with
a given architecture consisted of running five independent
trials with each of the input training set sizes.

Our initial simulations were run using networks with 50,
100, and 150 input layer units, without soft-clamping. We
varied the number of hidden units from 0 to 500 at intervals
of 100 units. For each of these conditions, the connectivity
scheme was as follows. The input layer was fully intercon-
nected (without self-connections). The hidden units were

connected randomly via modulatory links to 10% of the input
layer units, and also to 5% of the hidden layer units. All the
connections just described were symmetric.

Further simulations with the 100-input network were per-
formed, that included runs with soft-clamping, noisy test pat-
terns, and variable connection probabilities within the hidden
layer. Noisy versions of the testing patterns were created by
flipping the sign of each pattern element with a probability of
0.1 or 0.2. Finally, the probability of the random, symmetric
interconnections within the hidden layer was varied from .10
to .20.

We used the hyperbolic tangent activation function:

��	�
�
� 1

�
exp��	�� �
�� �

1 � exp��	�� �
�� �
where �
�� is the weighted summed input to the �th unit. We
used a large gain of 50.0 to speed up convergence. Lowering
the value of the gain did not seem to influence the recall
capabilities much if at all.

Results and Discussion

Results with noise-free patterns

Some of the results for the 100-input network with noise-
free data are presented in Figure 2. The bottom curve shows
the performance of networks with no hidden units and no
soft-clamping. The next-lowest curve shows the benefits of
soft-clamping with no hidden units. The remaining curves
show results for networks with soft-clamping and varying
numbers of hidden units. Although this figure suggests that
the hidden layer is beneficial, it also illustrates that testing
with noise-free patterns can be rather deceptive. In fact, we
could get perfect recall for any pattern set size (i.e., infinite
capacity) simply by setting the soft-clamping weights to be
sufficiently large. In doing so, input units would then ignore
the states of other units in the network, and simply copy the
states of their external input lines. However, these networks
would exhibit no tolerance to noise. In other words, the soft-
clamping helps to make stable attractors of the input patterns,
but it does not help to make wide attractor basins. In fact, it
may lead to more spurious attractors because it helps to make
stable attractors of every possible state. For the remaining
simulations reported here, networks were tested with noisy
patterns.

Results with noisy patterns

Figure 3 shows the results of 100-input networks tested
with noisy input patterns.

Effects of training set size: As mentioned earlier, the sim-
ple Hopfield network with no hidden units and no soft-
clamping has a relative capacity of about .15N, where N is
the number of units. If such a network is overloaded with
a number of patterns exceeding its capacity, its performance
rapidly deteriorates toward zero. Moreover, the capacity is
a great deal worse when measured with noisy test patterns.
These effects can be seen in the bottom curves of Figures
2 and 3 respectively. With soft-clamping and hidden units,
the network performs much better in the presence of noise.
With increasing training set sizes, the network performance



Figure 2: Plot of capacity versus training set size, averaged across
five different runs using different random training sets (with standard
error bars), for networks with 100 input units tested on noise-free
patterns. Each curve shows the results for a network with a different
number of hidden units (see legend). All networks had soft-clamping
except the bottom one, labelled “0-noSC”.

still deteriorates toward zero. Using an incremental learning
rule with weight decay may help to prevent this deterioration,
by allowing gradual replacement of old memories with new
ones. This should allow the capacity to remain relatively con-
stant (in absolute numbers of patterns recalled, as opposed to
proportion of training set size) as the training set size grows.

Although our model does not yield the sort of capacity
increases one would see with a more powerful learning proce-
dure such as back-propagation, in the league of Hopfield-style
networks with one-shot learning, it performs quite impres-
sively.

Effects of hidden layer size and connectivity: Varying the
size of the hidden layer from 0 to 500 units produced smoothly
increasing gains in capacity for all input sizes and training
set sizes tested. Only the performance curve for the 500-
hidden-unit network is shown in Figure 3. With respect to the
connectivity of the hidden layer, more significant gains were
achieved when the probability of the interconnections among
the hidden units was increased from 0.1 to 0.2 (not shown in
Figure). This has the effect of widening the basins of attrac-
tion for the input patterns, since more units are involved in the
representation. However, there is a limited benefit in continu-
ing to increase the connectivity in the hidden layer. In fact, if
the hidden layer is too strongly interconnected, performance
deteriorates – presumably because the hidden layer features
become correlated and may then lead to spurious attractors.

Effect of soft-clamping versus hidden units: By adding
hidden units and soft-clamping, we see more than a five-fold
improvement in capacity over the simple Hopfield network
without hidden units or soft-clamping. This estimate is de-
rived from Figure 3 by equating performance at the .7 recall
level as a proportion of the training set size. This is the maxi-

Figure 3: Plot of capacity versus training set size, averaged across
five runs (with standard error bars), for networks with 100 input
units tested on noisy patterns. Results for three different networks
are plotted: no soft-clamping and no hidden units (bottom curve),
soft-clamping and no hidden units (midde curve), and soft-clamping
and 500 hidden units (top curve).

mum achieved by the simple Hopfield network. At this point,
the original Hopfield network can store about 3.5 patterns in
a training set of 5 patterns, while the network with 500 hid-
den units and soft-clamping can store about 19 of 27 patterns.
Note that the network with 500 hidden units and 0.1 connec-
tion probability has only a four-fold increase in the number of
connections over a simple Hopfield network with 100 units.
To achieve this same improvement in a simple fully connected
Hopfield network would require increasing the network size
four- to five-fold, hence, adding 16 to 25 times the number
of connections. Additionally, one would need to increase the
number of bits of information in the input pattern, whereas in
our networks with hidden units we have not added any new
information to the input.

Hopfield networks with soft-clamping and hidden units out-
performed those with soft-clamping and no hidden units by
factors of 2.0, 1.6 and 1.4 when measured at the 1.0, 0.9 and
0.8 recall levels respectively (see Figure 3). Thus, the soft-
clamping accounts for most of the performance improvement,
but the hidden layer enhances peroformance significantly be-
yond this.

General Discussion

We began by stating that one way to improve the capacity
of an associative memory model would be to create random
codes in the hidden layer. Our model uses random sparse
connectivity, rather than random initial weights, to achieve a
degree of randomness in the hidden layer features. More im-
portantly, however, our model uses a principled, deterministic
scheme for improving upon the hidden codes, by minimiz-
ing the amount of frustration in the input layer. One might



think that simply assigning random initial states to the hidden
units would be better still. However, this would be equivalent
to simply increasing the size of the input, and would require
adding new external information to augment the input pattern.

We have also demonstrated the utility of using soft-
clamping in a Hopfield network: soft-clamping turns out to
be at least as important as hidden units in improving the ca-
pacity. At low noise levels, in fact, the hidden units provide
little or no advantage beyond that of soft-clamping. At high
noise levels, however, the hidden layer becomes increasingly
beneficial in cleaning up the input states. As discussed above,
increasing the connectivity in the hidden layer widens the
basin of attraction, leading to better performance with noisy
patterns.

Other Ways to Improve Capacity

A variety of other schemes have been proposed for improving
the capacity in associative memory models, while retaining
one-shot Hebbian learning. We describe two here: the use of
sparse activations, and non-monotonic activation functions.

Sparse activations

Several investigators have demonstrated the utility of sparse
activations in improving memory capacity (Amit et al., 1987;
Tsodyks, 1988; Tsodyks & Feigel’man, 1988). That is, rather
than using equal bit probabilities in generating the input pat-
terns, only a small number of the input units should be on. An
intuitive way to understand the reason for this is to think of the
probability of any pair of units being on together. With ran-
dom patterns, the pairwise probabilities are just equal to the
product of the individual bit probabilities. Thus, with sparse
patterns, any pair of units has a much lower chance of being
on together. In this case, the connections encode associations
that occur relatively infrequently; thus, each association may
only represent a single memory episode. Large sparsely con-
nected networks therefore seem to be well-suited as models
of episodic memory. This analysis applies equally well to the
hidden layer codes in our network. Thus, we would expect a
comparable improvement in capacity for our multi-layer net-
work if we used sparse codes at both the input and hidden
layers.

Alternative activation functions

Morita has studied a version of the Hopfield network
that uses a non-monotonic activation function (Morita, 1993;
Yoshizawa et al., 1993) of the form shown in Figure 4.
Morita’s network achieves approximately a three-fold im-
provement in capacity over Hopfield’s dynamics. Interest-
ingly, when the Morita network is presented with a noisy
pattern that it fails to recognize, rather than settling to an in-
correct attractor, Morita claims that it instead wanders chaot-
ically through its state space. Recent estimates of the fractal
dimension of Morita network dynamics by Thomas Trappen-
berg (personal communication) confirm that they do indeed
appear to be chaotic.

Why would chaotic behavior be desirable in a memory
model? Steve Joordens (personal communication) has sug-
gested that one could build a recognition memory network

Figure 4: Morita’s non-monotonic activation function.

based on Morita’s dynamics that can discriminate a familiar
stimulus, that brings the network to an attractor state, from a
novel stimulus, that does not. This suggests two intriguing
possibilities for memory models: 1) The distinction between
attractor states and chaotic dynamics could be used to signal
the memory system as to when it should encode something
new, rather than encoding every item that is presented to the
network. 2) If the chaotic path through state space remains
sufficiently far from any stored patterns, it may be used to
select pseudo-random target states for the hidden layer when
a new code is to be learned. In other words, the Morita dy-
namics could be used to advantage in our model to help select
good hidden layer codes for novel patterns. We are currently
investigating the utility of combining both sparse codes and
Morita dynamics with the learning procedure described here.

Relation to Hippocampal Function

It is widely believed by both neuroscientists and memory re-
searchers that the seat of the episodic or explicit memory sys-
tem is the hippocampal area (including surrounding cortical
structures). Early attempts to model hippocampal function
assumed that this brain region behaved like a simple Heb-
bian pattern associator (Marr, 1971; McNaughton & Nadel,
1990). Two more recent models have emphasized the need
for a random recoding of the hippocampal inputs from the
dentate gyrus into a sparse code in the CA3 region of the hip-
pocampus (McClelland et al., 1995; Levy & Wu, 1993; Levy
& Wu, 1996; Levy, 1997). The model proposed here is con-
sistent with that interpretation, i.e., the dentate gyrus acts as
the input layer and CA3 acts as the hidden layer. The mossy
fiber projections from the dentate to CA3 could play the role
of sending plasticity-gating modulatory signals. This could
be accomplished via a frequency code (e.g., the hippocampal
theta rhythm), or by modulating the gain of the hidden units’
activation functions in combination with a plasticity threshold.

Our model would need to be elaborated to account for the
detailed circuitry of the hippocampal structures. For example,
our model has symmetric feedback connections from the hid-
den to the input layer, whereas there do not appear to be direct
back-projections from CA3 to the dentate gyrus. Instead, the



input to the dentate is re-integrated with the code produced in
the CA3 region at the subsequent processing stages (CA1 and
entorhinal cortex). If we removed the back-projections from
the hidden to the input layer, and used sparse codes, the hid-
den layer would be performing a rather interesting function:
it would directly encode only the surprising parts of the input
– pattern elements that are not expected given the pairwise
associations learned within the input layer. This may be a
very efficient way to encode novel episodes.

Levy and others have stressed the role of the hippocampal
system in forming temporal associations in sequence learning.
Several investigators have shown that adding a temporal delay
in the Hebbian learning rule can accomplish this in simple
associative memory models (e.g. Amari, 1972; Griniasty
et al., 1993; Levy & Wu, 1996; Levy, 1997).

Conclusions

We have presented a novel algorithm for training Hopfield
networks with hidden units that both deepens and widens the
attractor basins around the training patterns. The model is of
interest as a potential account of human recognition memory
and hippocampal function.

Acknowledgements

We thank Steve Joordens, Thomas Trappenberg, Geoff Hinton
and the members of the Connectionist Research Group at the
University of Toronto for valuable feedback on this work. All
simulations were performed using software developed with
the Xerion Neural Network Simulator from Hinton’s lab at
the University of Toronto. This work was supported by re-
search grants to the second author from the Natural Sciences
and Engineering Research Council of Canada and the James
S. McDonnell Foundation’s McDonnell-Pew Program in Cog-
nitive Neuroscience.

References

Amari, S. I. (1972). Learning patterns and pattern sequences
by self-organizing nets of threshold elements. IEEE Trans-
actions on Computers, C-21:1197–206.

Amit, D., Gutfreund, H., & Sompolinsky, H. (1987). Informa-
tion storage in neural networks with low levels of activity.
Physical Review A, 35:2293–2303.

Anderson, J. A. (1972). A simple neural network gener-
ating an interactive memory. Mathematical Biosciences,
14:197–220.

Anderson, J. A. (1995). An introduction to neural networks.
Cambridge, MA: The MIT Press.

Eich, J. M. (1982). A composite holographicassociative recall
model. Psychological Review, 89:627–661.

Griniasty, M., Tsodyks, M. V., & Amit, D. J. (1993). Con-
version of temporal correlations between stimuli to spatial
correlations between attractors. Neural Computation, 5:1–
17.

Hinton, G. E. (1989). Connectionist learning procedures.
Artificial Intelligence, 40:185–234.

Hopfield, J. J. (1982). Neural networks and physical systems
with emergent collective computational abilities. Proceed-
ings of the National Academy of Sciences U.S.A., 79:2554–
2558.

Hopfield, J. J. (1984). Neurons with graded response have
collective computational properties like those of two-state
neurons. Proceedings of the National Academy of Sciences
U.S.A., 81:3088–3092.

Humphries, M., Bain, J., & Pike, R. (1989). Different ways
to cue a coherent memory system: A theory for episodic,
semantic, and procedural tasks. Psychological Review,
96:208–233.

Kohonen, T. (1972). Correlation matrix memories. IEEE
Transactions on computers, C-21:353–359.

Levy, W. B. (1997). A sequence predicting CA3 is a
flexible associator that learns and uses context to solve
hippocampal-like tasks. to appear in Hippocampus.

Levy, W. B. & Wu, X. (1993). Predicting complex behavior in
sparse asymmetric networks. In S. J. Hanson, J. D. Cowan,
& C. L. Giles (Eds.), Advances in Neural Information Pro-
cessing Systems 5 (pp. 556–563). Morgan Kaufmann.

Levy, W. B. & Wu, X. (1996). The relationship of local con-
text codes to sequence length memory capacity. Network:
Computation in Neural Systems, 7:371–384.

Marr, A. (1971). Simple memory: A theory for archicortex.
Philosophical Transactions of the Royal Society of London,
262 (Series B):23–81.

McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C.
(1995). Why there are complementary learning systems
in the hippocampus and neocortex: Insights from the suc-
cesses and failures of connectionist models of learning and
memory. Psychological Review, 102(3):419–457.

McNaughton, B. & Nadel, L. (1990). Hebb-Marr networks
and the neurobiological representation of action in space.
In Neuroscience and connectionist theory. Lawrence Erl-
baum.

Morita, M. (1993). Associtive memory with nonmonotone
dynamics. Neural Networks, 6:115–126.

Murdock, B. B. (1982). A theory for the storage and retrieval
of item and associative information. Psychological Review,
89(6):316–338.

Standing, L. (1973). Learning 10,000 pictures. Quarterly
Journal of Experimental Psychology, 25:207–222.

Tsodyks, M. V. (1988). Associative memory in asymmetric
diluted network with low level of activity. Europhysics
Letters, 7(3):203–208.

Tsodyks, M. V. & Feigel’man, M. V. (1988). The enhanced
storage capacity in neural networks with low activity level.
Europhysics Letters, 6:101–105.

Tulving, E. (1972). Episodic and semantic memory. In E.
Tulving & W. Donaldson (Eds.), Organization of memory
(pp. 381–403). New York: Academic Press.

Yoshizawa, S., Morita, M., & Amari, S. (1993). Capacity of
associtive memory using a nonmonotonic neuron model.
Neural Networks, 6:167–176.


