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limit of the parameters, the theory tends
smoothly to general relativity in all its
predictions. The 1960s vintage scalar—
tensor theory of Brans and Dicke (which
was based on earlier theories by Jordan
and Fierz) is the classic example. There
a parameter wgp iS an inverse measure
of the strength of a scalar field added to
the usual spacetime metric tensor field.
As wgp tends to infinity, Brans-Dicke
theory tends to general relativity.

Non-simply connected theories are so
qualitatively different from general rela-
tivity in their formulations, that they do
not formally tend to it in any limit.
Nevertheless, many theories in this class
can be made to agree with general re-
lativity in the weak-field, slow-motion
regime of the Solar System.

Binary pulsar tests have proven to
be deadly for non-simply connected
theories, because their qualitative di-
vergences from general relativity usually
show up with a vengeance in strong-field
and radiative situations. The best exam-
ple of this was the ‘bimetric’ theory of
Nathan Rosen, which agreed with Solar
System tests but failed spectacularly in
the binary pulsar®.

The same cannot be said for simply
connected theories. Not that they do not
deviate from general relativity in binary
pul'sar systems, for they do, but they also
generally deviate from it in the Solar
System, and so are already constrained,
usually more strongly than is currently
achievable in binary pulsars. Current
Solar System tests of light deflection and
Shapiro time delay (both around 0.1 per
cent) constrain the Brans—Dicke theory’s
wgp to be greater than 500 (ref. 4). This
makes the theory so close to general
relativity (roughly within factors of
Vowpp in all its predictions) that it easily
satisfies all the  binary  pulsar
constraints’. Put differently, the results
quoted for PSR1913+16 by Taylor et al.!
provide the constraint wgp > 100, which
is not competitive with the Solar System
bound.

This raises a theoretical question. Is it
possible to find a simply connected
theory of gravity that is not constrained
by Solar System tests, but that can be
constrained by binary pulsar tests?
Damour and Esposito-Farese have
shown that it is (T. Damour and G.
Esposito-Farese Class. Quant. Grav.,
manuscript submitted). They cook up a
scalar—tensor theory d la Brans—Dicke in
which two scalar fields appear, tuned so
that their effects in the weak-field limit
of Solar System tests cancel, making the
theory indistinguishable from general
relativity for that application. In the
strong-field and radiative limits, how-
ever, the scalar fields combine to pro-
duce observable differences. Yet as the
theory’s two parameters ' and " tend
to zero, the theory does tend smoothly

112

to general relativity. As Taylor er al.
report, the two binary pulsar systems
together provide a strong constraint on
these parameters, consistent with zero.
The Wolszczan-Frail planetary sys-
tem®> will not have much impact on
general relativity, because the planets
are too light to emit significant gravita-
tional radiation, and their orbits are too
circular to reveal a meaningful perias-
tron. But it does present a challenge to
astrophysicists to explain how and when
such planets formed, and how they sur-
vived the various cataclysms that usually
afflict the lives of millisecond pulsars. It
also suggests that planetary systems in
the Galaxy may be more common than
has hitherto been evident from optical

searches (which have found nothing).
On the other hand, I wouldn’t Iay
odds on the existence of life on these
planets. d
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NEURAL NETWORKS

Learning from your neighbour

Graeme Mitchison and Richard Durbin

WHAT can artificial neural networks tell
us about the brain? One view is that they
can be used to explore the consequences
of different synaptic learning rules in a
simplified formal setting. However, the
most powerful learning algorithms, such
as back propagation!, need an external
‘supervisor’ to correct the mistakes made
by the network, which is an unrealistic
requirement especially for early stages
of sensory processing. How, therefore,
does one learn effectively without a
supervisor? On page 161 of this issue?,
Becker and Hinton propose an answer to
this question. Theirs is not the first
unsupervised learning algorithm, but
they take a new approach which has a
paradoxical charm: in effect, different
pieces of the inputs train each other.
The goal of an unsupervised learning
algorithm is to extract meaningful
features or variables from a set of input
patterns. For example, we can try to find
those features that allow the data to be
reconstructed as faithfully as possible.
This is the goal of principal component
analysis, a standard tool of engineering
and statistics. By identifying the com-
binations of inputs with maximum
variance, it finds the variables that can
be most effectively used to characterize
the inputs. Remarkably enough it turns
out that the first neurobiological learning
rule to be formulated, Hebb’s rule?, is
closely related to principal component
analysis. Given a simple neural-network
model consisting of a single unit, Hebb’s
rule results in that unit extracting the
largest principal component, assuming
some form of normalization of synaptic
connection strengths*>. With a small
amount of modification, a set of units
can be made to learn not just the largest
component, but a set of components
which together capture the greatest
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part of the variance®’.

Principal components appear in at
least some cases to be involved in bio-
logical processes. In the local processing
of visual images, for example, the prin-
cipal components include edge segments,
which are among the first features
extracted in primary visual cortexS.
However, other important variables,
such as stereoscopic disparity, will not be
explicitly extracted. Becker and Hinton
show how one could set about extracting
these more elusive variables. One way to
describe their approach is that they
assume that the interesting properties
are more stable than the noise. For
example, the depth of a surface, as
measured by stereoscopic disparity, will
tend to vary smoothly in scanning across
an image, whereas the local pixel intensi-
ties may vary rapidly because of texture.

Consider a system looking at two
neighbouring, non-overlapping patches,
and suppose that, corresponding to each
patch, there is a unit whose inputs come
from that patch only. One could try to
make the units extract a stable property
by requiring that they both perform the
same computation on their input and
by minimizing the difference in their
responses. But then they might end up
both doing nothing (that is, give a zero
response). To avoid this, one could try
to mimic hebbian principal component
learning, and ask the units to maximize
the variance in their responses. Becker
and Hinton combine these requirements
by making the units maximize the vari-
ance of the sum of their outputs divided
by the variance of their difference.

On the assumption that both the
underlying variable and the noise have a
gaussian distribution, this is equivalent
to maximizing the mutual information of
the two outputs. Here one can see parti-
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cularly clearly how the algorithm works:
the mutual information can be large only
if, first, the units convey information
(that is, they behave nontrivially) and if,
second, they respond similarly, so they
share this information. The Hebb rule
essentially imposes the first constraint
alone. By adding the second constraint
the new rule allows information to be
thrown away when it is not shared by
other patches.

Maximizing mutual information can
also be interpreted as prediction, be-
cause each unit can be used to predict
the behaviour of neighbouring patches.
The notion of prediction is more general
than that of stability: we can look for
properties that predict future inputs, or
predict one set of sensory data through
another sensory modality. Prediction can
help to complete or interpret missing
data, and where prediction fails some-
thing interesting is likely to be happen-
ing. For example, places where disparity
changes sharply will usually correspond
to the edges of objects.

Neural networks are inspired by real
neurons, but is there is any reverse flow
of inspiration? Might a rule such as this
operate in the brain? It seems unlikely
that neurons compute something as
mathematically complex as the ratio of
variances, let alone the determinants
which occur in the more general express-
ion for more than two units. Further-
more, some of the difficulties of back
propagation apply to the multilayer ver-
sion of this algorithm, which must some-
how feed back a complex error signal to
earlier stages in the neural pathway. But
it is important not to be too intimidated
by the mathematical formulation. After
all, principal component analysis, which
in its standard form requires matrix in-
version, might seem an unlikely opera-
tion for neurons to accomplish. Yet it
can be carried out by suitably organized
hebbian machinery. It seems likely, in
fact, that there are natural ways for
neurons to carry out Becker and Hin-
ton’s kind of analysis, or something very
close to it, and this may provide another
clue to help us explore synaptic learning
rules in the brain. O

Graeme Mitchison is in the Physiological
Laboratory, University of Cambridge, Cam-
bridge CB2 3EG, UK. Richard Durbin is in the
MRC Laboratory of Molecular Biology, Hills
Road, Cambridge CB2 2QH, UK.

1. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Nature
323, 533-536 (1986).

2. Becker, S. & Hinton, G. E. Nature 355, 161-163
(1992).

. Hebb, D. O. The Organization of Behavior (Wiley, New

York, 1949).

Oja, E. J. math. Biol. 15, 267—-273 (1982).

. Linsker, R. Computer 105-117 (March 1988).

. Sanger, T. D. Neural Networks 2, 459-473 (1989).

. Foldidk, P. in Proc. Int. Joint. Conf. Neural Networks Vol.
1, 401405 (IEEE, New York, 1989).

. Hubel, D. H. & Wiesel, T. N. J. Physiol. 160, 106-154
(1962).

~ooAs W

[ed]

NATURE - VOL 355 - 9 JANUARY 1992

Radio days of a remnant supernova

IN the history of supernova 1987A, now
almost five years old, radioastronomers
have so far had a negligible role. Apart
from a brief initial outburst of radio
emission, lasting no more than a few
days, the expanding nebula set into
motion by the explosion has been quite
invisible at radio frequencies, and the
steady thinning and cooling of the
ejected material, and its interaction with
the circumstellar material that sur-
rounded the progenitor, has been fol-
lowed largely through ultraviolet, optical
and infrared observations. But else-
where in this issue (Nature 355, 147—
149; 1992). L. Staveley-Smith et al.
describe their detection of radio emis-
sion from the remnant, illustrated here
overlayed on an optical picture from the
Hubble Space Telescope. Evolution of
the radio remnant over the coming years
will provide a new tool to dissect the
progress of the expanding remnant.

The key to understanding the remnant
of SN1987A lies in the nature of its
unusual progenitor star, which was first
a red-giant, then a blue giant, before it
exploded. In its red-giant phase, the star
threw off a dense, slow-moving wind,
which was succeeded by a more tenuous
but faster wind from the blue-giant. The
circumstellar material of the progenitor
at the moment of explosion therefore
consisted of a hot thin gas cocooned
inside a cooler, thicker shell, with a
shock wave created at the boundary as
the blue-giant wind ran into the red-
giant wind.

The first brief flash of radio emission,
reported by A. J. Turtle et al. (Nature
327, 38-40; 1987), was a very minor
part of the initial supernova outburst,
and was probably attributable to the
propagation of the shock wave from the
explosion through the thin material im-
mediately surrounding what had been

the progenitor star. According to R. A.
Chevalier (Nature, in the press), the
emission now detected by Staveley-
Smith and colleagues is due to the same
expanding shock finally reaching the
outer edges of the old blue-giant wind,
just before it runs into the denser red-
giant wind. Chevalier predicts that as
the expanding ejecta passes through
this boundary layer, the radio signal will
rise and then diminish again, a signa-
ture which should be seen sometime
during 1992.

After this transient appearance,
SN1987A is unlikely to emerge as a fully
formed radio supernova remnant for
some time. The ages of radio remnants
seen in other galaxies as well as our
own are typically measured in hundreds
of years at least, and there have been
few opportunities for astronomers to
observe a supernova at close enough
hand to see the radio remnant arise
from the expanding nebula. Before the
advent of SN1987A, astronomers had to
make do with studies of supernovae in
other galaxies, and those that are de-
tectable at radio frequencies have been
either mature remnants or very new
ones, which have faded within a few
years.

Just before the radio recapture of
SN1987A, however, J. Cowan, et al.
(Astrophys. J. 379, L49-151; 1991)
spotted the reappearance of a 20-year
old supernova, SN1970G in the galaxy
M101, that had been radio-bright for
about three years after outburst but
which had then sunk below detectability.
It is thought that the progenitor of
SN1970G was, like that of SN1987A, a
fairly massive star, and the explanation
for the reappearance of radio emission
from the former after 20 years and from
the latter after five may be essentially
the same. David Lindiey
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