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Abstract
The notion of prediction error has established itself at the heart of formal models of animal learning and
current hypotheses of dopamine function. Several interpretations of prediction error have been offered,
including the model-free reinforcement learning method known as temporal difference learning (TD),
and the important Rescorla–Wagner (RW) learning rule. Here, we present a model-based adaptation of
these ideas that provides a good account of empirical data pertaining to dopamine neuron firing patterns
and associative learning paradigms such as latent inhibition, Kamin blocking and overshadowing. Our
departure from model-free reinforcement learning also offers: 1) a parsimonious distinction between
tonic and phasic dopamine functions; 2) a potential generalization of the role of phasic dopamine from
valence-dependent “reward” processing to valence-independent “salience” processing; 3) an explana-
tion for the selectivity of certain dopamine manipulations on motivation for distal rewards; and 4) a
plausible link between formal notions of prediction error and accounts of disturbances of thought in
schizophrenia (in which dopamine dysfunction is strongly implicated). The model distinguishes itself
from existing accounts by offering novel predictions pertaining to the firing of dopamine neurons in
various untested behavioral scenarios.

Keywords: Dopamine, prediction error, associative learning, blocking, latent inhibition, overshadow-
ing, schizophrenia, reinforcement learning, incentive salience, motivated behavior, temporal difference
algorithm, Rescorla–Wagner learning rule, psychosis

Introduction

Dopamine, particularly within the mesolimbic sub-system, is a neuromodulator of great
interest because of its central role in reward, learning and motivation, as well as its implication
in diseases such as schizophrenia. The precise role of dopamine in each of these processes
is still a matter of debate, and a number of partially overlapping hypotheses exist. The
primary aim of this paper is to relate two interpretations of prediction error (Temporal
Difference learning and Rescorla–Wagner’s learning rule) within a formal framework that
can link dopamine neuron firing to learning, motivation and disturbances of thought. Our
theme is to extend the notion of dopamine from a mediator of “reward prediction error” to
a purveyor of “unexpected significance,” and to place internal modelling at the heart of a
dopamine-modulated reward system. This approach allows us to consider the implications
of the model for schizophrenia, in which a dopamine disturbance is suspected.
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Dopamine neuron firing and prediction error

A series of influential electrophysiological experiments by Schultz and colleagues have
recorded the firing of dopamine neurons in the monkey midbrain under a variety of
behavioural conditions, leading to the hypothesis that dopamine neurons fire in response
to unpredicted reward. Early in training, a primary rewarding stimulus such as juice elicits a
phasic response, but as the animal is repeatedly exposed to the task, this response transfers to
the earliest reliable predictor of that reward (Schultz 1998). Furthermore, this fundamental
finding appears to be independent of whether the conditioning procedure is instrumental
(the animal must work for the reward) (Mirenowicz & Schultz 1994) or Pavlovian (the re-
ward is not contingent on the animal’s actions) (Waelti et al. 2001). It has been proposed
that this phasic dopamine response drives learning by signalling a prediction error that effec-
tively labels events as “better than expected”. Important parallels between this signal and the
prediction error signal of the temporal difference learning algorithm (TD) have been drawn
(Barto 1995; Houk et al. 1995; Montague et al. 1996; Schultz et al. 1997), linking formal
and animal reinforcement learning. Figures 1 and 2 offer a highly simplified summary of the
electrophysiological recordings collected by Schultz and colleagues.

The TD hypothesis proposes that the phasic dopamine response is used to update rep-
resentations of stimulus → reward, and in some cases stimulus → response, associations.
TD assumes that the environment itself behaves as a Markov Decision Process (MDP). An
MDP consists of a number of “states” that represent external conditioned and unconditioned
stimuli. For example, one state might represent the onset of a conditioned stimulus (CS),
and another state might represent the onset of an unconditioned stimulus (US). Within the
MDP, each state has an intrinsic reward value associated with it. These reward values are
denoted by the function, r . For example, the intrinsically rewarding properties of the US
might be represented by r(US) = 1, while the intrinsically neutral properties of the CS by
r (CS) = 0. The details of the MDP are initially hidden from TD, and the fundamental goal
of the algorithm is to learn to predict the future reward associated with each state through
trial and error interaction with the environment. Once these future rewards are learned, they
can be used to motivate appropriate behaviour (Sutton & Barto 1998). TD represents its
estimates of future reward using a Value function (capitalized to distinguish its special mean-
ing), abbreviated to V. After learning has taken place in the current example, V(CS) = 1, even
though r (CS) = 0. This is because the US (with r (US) = 1) consistently follows the CS. The
important point is that TD does not represent the underlying cause–effect contingencies of
the MDP, but just stores the future reward or Values. Consequently, when a CS is presented,
TD knows how great the future reward is likely to be, but does not know what the future
states are likely to be. For example, TD cannot distinguish between different types of future
US, if they had a similar reward value, r, during learning of the CS–US association. Evidence
suggests that, on its own, TD is insufficient for describing many animal behaviours (Dayan
2002; Dayan & Balleine 2002). For example, animals can be motivated to respond to a CS
in a highly outcome specific way (Berridge & Schulkin 1989).

TD represents only one approach to formal reinforcement learning. An important alter-
native involves learning a more faithful version of the MDP that includes the transitions that
occur between states. Model-based approaches learn to represent a link between the state
representing the CS and the state representing the US. Now, when presented with the CS,
this acquired link can be used to actually invoke the internal representation of the specific
US that is expected to follow. Therefore, a model-based approach, when presented with a
CS, can distinguish between two different types of future US, even if they were similarly
rewarding on previous occasions. TD is referred to as model-free because no explicit model
of the state-to-state transitions is maintained. Model-free representations are efficient in



Dopamine, prediction error and associative learning 63

Figure 1. A simplified summary of key electrophysiological data. (a) Dopamine neurons fire in response to unpre-
dicted reward (Romo & Schultz 1990; Schultz et al. 1992; Mirenowicz & Schultz 1994; Schultz 1997; Hollerman &
Schultz 1998; Waelti et al. 2001; Fiorillo et al. 2003); (b) after training, the onset of the dopamine signal transfers
to coincide with that of a predictive stimulus (sources as for (a)); (c) omission of expect reward elicits a depression
below baseline firing rate (Schultz et al. 1992; Hollerman & Schultz 1998; Waelti et al. 2001); (d) if an expected
reward arrives early, then a phasic response is elicited at the new time of reward, but there is no depression at the
expected time of reward (Hollerman & Schultz 1998); (e) if an expected reward arrives late, then a depression is
observed at the expected time of reward and a phasic response is observed at the new time of reward (Hollerman
& Schultz 1998); (f) in cases where the reward is preceded by multiple (sequential) cues, the onset time of the
phasic dopamine response transfers to coincide with that of the earliest predictor (Schultz et al. 1992); (g) if two
sequential stimuli predict a reward, but the interval between the first and second stimulus is random, then a phasic
dopamine signal persists in response to both stimuli, but not to the reward itself (Schultz et al. 1992); (h) if a
conditioned stimulus predicts a reward with probability, p, then the phasic response to the CS is proportional to p,
and the response to the reward itself is proportional to 1-p (Fiorillo et al. 2003). The black responses correspond to
a session where p = 0.75, while the white responses correspond to a different session where p = 0.25. The sources
for each figure include summary papers as well as primary experimental accounts.

environments with large numbers of states, but incomplete with respect to their ability to
predict which type of US follows a CS. Figure 3 contrasts the types of internal representations
learned by model-based and model-free methods.

It is a crucial and unresolved question as to whether model-free approaches such as TD are
sufficient for describing the dopamine system, or whether a more faithful representation of
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Figure 2. A simplified summary of recordings from dopamine neurons during a Kamin blocking task (Waelti et al.
2001). (a) A neutral stimulus, A, precedes a reward. After training, the dopamine response transfers to A, as in
Figure 1b; (b) the monkey is then trained on trials in which a compound stimulus (A and X precedes the reward).
There is no change in dopamine response; (c) after training on the AX → US contingency, there is still no change to
the dopamine signal; (d) now, if X is tested on its own, the dopamine signal behaves as if X has not been conditioned.
A lack of conditioning of X is observed in behavioural tests as well as in the dopamine neurons themselves, and
this constitutes the Kamin blocking effect (Kamin 1969). (e) In a second experiment, a neutral stimulus, B, is
presented but not paired with reward. No dopamine response is observed; (f) the monkey is then trained on trials
in which a compound stimulus (B and Y precedes the reward). Initially the unpredicted reward elicits a dopamine
response; (g) after training on the BY → US contingency, the dopamine signal transfers from the reward to the time
of presentation of the compound stimulus BY; (h) now, if Y is tested on its own, the dopamine signal behaves as if
Y has been successfully conditioned. In other words, stimulus B has failed to block the conditioning of stimulus Y.
The unfilled triangle represents data inferred but not explicitly given.

the underlying MDP (environment) is suggested. The current paper begins by demonstrat-
ing that a model-based approach is able to account for patterns of dopamine neuron firing as
easily as TD. A wider data set is then considered pertaining to traditional associative learn-
ing paradigms, motivated behaviour, tonic dopamine function, “salience”-based dopamine
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Figure 3. In model-based approaches an explicit internal model of the environment is constructed, comprising a
reward function, R, and a transition function, T. In contrast, model-free techniques, such as TD, represent only a
Value function, V, that estimates future reward from each state.

hypotheses, and acute schizophrenia. The advantages of using a model-based approach are
explored with respect to these data.

The model

Stimulus → outcome models of the environment (also called internal models or declara-
tive representations) have been embraced by diverse fields including artificial intelligence,
formal reinforcement learning, experimental psychology and computational neuroscience
(Dickinson 1980; Schmajuk et al. 2001; Sutton & Barto 1981; Sutton & Barto 1998). Our
approach to modelling the data of Figures 1 and 2 is a straightforward instantiation of model-
based reinforcement learning in which an estimate of the underlying MDP is explicitly rep-
resented during learning. Here, the word explicit refers to the reward function, r , and the
transitions between states. The model’s estimates of these components of the MDP will be
denoted by R and T, respectively. No Values are learned or stored, and the cardinal feature
of this model-based approach is that the all-important estimate of future reward is generated
every time a CS is encountered. For example, when a CS is presented, the internal model
of the environment is used to “look-ahead” to expected future outcomes (learned through
experience), and the estimated rewards (R) of those future outcomes are summed to gen-
erate the estimated future reward. One advantage of generating future reward in this way is
that the motivational value of the CS can be modulated based on the current motivational
state of the system (i.e., hunger, salt-deprivation etc.). In contrast, TD wraps up the future
reward into a pre-evaluated quantity that requires no look-ahead but that depends on the
motivational state during learning. The current approach is inspired by a number of influen-
tial model-based accounts including Schmajuk (1988), Schmajuk et al. (2001), Suri (2001),
Suri et al. (2001) Dayan (2002) and Dayan & Balleine (2002). For the present, we focus on
the predictive relationship between CS and US and ignore action choices or the policy.

In addition to states representing the onset of external stimuli, a number of interval tim-
ing states are conventionally used, leading to the standard “tapped delay line” assumption
(Montague et al. (1996) for example). This assumption has allowed formal reinforcement
learning methods to simulate the interval-sensitive responses of animal behaviour and neu-
ron firing. Continuing this convention, we assume that a learning agent has at its disposal an
arbitrary number of internal states that represent every possible external stimulus at every
possible time since its onset, for an arbitrary temporal resolution. One unit of time is equated
with one second, for the purposes of yoking the timing to that of real experiments. We also
assume that, at any time, exactly one of these internal states is appropriately activated by the
environment with a value of 1, and that the active internal state will always correspond to
the most recently presented external stimulus. It is convenient to define Sa,b as the state that
responds “b” seconds after the onset of stimulus “a.” For example, in a standard conditioning
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task in which CS and US are separated by 3s, the order of state activations might be: SCS,0,
SCS,1, SCS,2, SUS,0, STerminal, where STerminal refers to a special state that signifies the end of a
trial in each simulated task. After the terminal stimulus is presented, the model is dormant
until the start of the next trial. These assumptions greatly simplify the discussion without,
hopefully, losing any of the important details. For convenience, we will refer to a given state
in one of two ways—either using the state–time index described above, or by using just a
single index that refers to an abstract label. In the latter case, where stimulus and time since
onset are not important, Si simply refers to the ith state, where i ∈ {1 . . . n}, with n = number
of available states.

Each state,Si , is connected to every other state,Sj , via a unique transition connection with
its own weight, 0 ≤ T(i, j ) ≤ 1. Each transition weight, T(i, j ), adapts during environmental
exposure to reflect the probability of internal state j following internal state i . Actual reward
values are provided by the environment, and will be arbitrarily set at 1 for rewarding US, and 0
otherwise. For a given time into the current trial, t, this reward is denoted by rt . For example,
if a rewarding US happens to be present at time t, then rt = 1, otherwise rt = 0. Each state,Si ,
maintains its own (real-valued) estimate, R(Si ), of this immediate reward, which is adapted
during environmental exposure. Between them, T and R model the important features of
the environment, with T capturing the sequential structure of stimuli, and R capturing the
rewarding impact of stimuli. R and T are the only free parameters of the model, and are
initialized to 0. Figure 3 (left) shows a simple illustration.

The variable, t, will denote the time into the current trial. We define ξt(Si ) as the real-
valued activation at time t of state Si based on the environmental input. For example if a CS
is presented at time t then, ξt(SCS,0) = 1, and all other internal state units have an activation of
0. If the stimulus persists then ξt+1(SCS,1) = 1, etc. Later in the trial, a US might be presented
and so ξt+5(SUS,0) = 1 for example.

At each point in each trial, a look-ahead process will be invoked to assess the expected
consequences given the current state of the trial. Since the look-ahead process involves
running through hypothetical outcomes inside the model, we also introduce the notion of
a “look-ahead time,” which will always be denoted by a new variable, v. So t defines the
current point in the trial, and v denotes how many time-steps into the future (i.e., from
t) the look-ahead process is currently evaluating. Therefore, the activation of hypothetical
future states generated by look-ahead will be indexed by both t and v. To clarify, we define
ξ̂ v

t (Si ) as the real-valued activation of state Si at the vth stage of the look-ahead process,
given that the look-ahead process was initiated based on the environment-driven activations
of time t. For example:ξ̂0

t (Si ) = ξt(Si ), and ξ̂1
t (Si ) reflects the estimated likelihood of Si being

the next state. Similarly, ξ̂2
t (Si ) reflects the estimated likelihood of Si being the active state in

two seconds time etc. The look-ahead process uses the learned transition connections (T)
to simulate the next hypothetical state: ξ̂1

t (Si ) = ∑
j=1 ...n ξ̂0

t (Sj ) × T( j, i), and in general:

ξ̂ v+1
t (Si ) =

∑
j=1 ...n

ξ̂ v
t (Sj ) × T( j, i) (1)

Ordinarily, only one state will be activated at a time during each step of the look-ahead process
and so the calculation is trivial, simply propagating activation from one state to another as the
internal model simulates expected future stimuli. As a result of the look-ahead process, ξ̂ v

t (Si )
provides an estimate of the probability of Si being encountered in the actual environment v

time-steps following t.
The ability to predict future reward (also called the discounted return) is central to all

formal reinforcement learning techniques. When using a model-based approach, the look-
ahead process can be used to generate the return, by summing all the estimated reward values
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of all states encountered during look-ahead. For example, at time t, the return is estimated
by:

Return = rt +
DEPTH∑

v=1

∑
k=1 ...n

ξ̂ v
t (Sk) × R(Sk) (2)

where rt is the reward elicited from the environment at time t and DEPTH is a finite horizon
on the depth of the look-ahead process (arbitrarily fixed at 15 for all experiments reported
here).

A model quantity is now introduced that will be identified with the firing of dopamine
neurons. A simulated “phasic dopamine” signal is generated on the activation of a new
internal state if and only if both the following criteria are satisfied:

1) Surprise: The currently active state was not predicted by the previously active state.
2) Significance: The currently active state is rewarding or predicts reward.

The simulated phasic dopamine signal will then effectively mark the current event with the
tag of “unexpected Significance”. A formal definition of Significance is given in Equation
2 and is simply the standard return—i.e., an event is significant only if it is rewarding or
predicts reward. Surprise is simply the degree to which the current state, Sj, (at time t) is
unpredicted, and can be formalised by:

Surprise =
{

ξt(Sj ) − ξ̂1
t−1(Sj ) If ξt(Sj) > 0

0 Otherwise
(3)

Having defined Surprise and Significance, the model quantity simulating the phasic
dopamine response is formalized as:

DAphasic = Surpise × Significance (4)

This definition captures a very similar type of prediction error to that utilized by TD, and
will be equally successful in accounting for the firing of dopamine neurons. For example, an
unpredicted US will generate a response, while a fully predicted US will not. Non-rewarding
events will always fail to elicit a response.

At the start of each trial, t = 0, and Surprise is automatically set to 1 since we assume
that the first state of a trial can never be predicted. Every time a new state, Sj , is activated
by the environment, t is incremented by 1, a reward rt is elicited from the environment, and
R is updated:

R(Sj ) := R(Sj ) + α(rt − R(Sj )) (5)

For every new state, DAphasic is also generated. In TD, DAphasic is used to update the Values,
but here DAphasic is used to update T:

T(x, y) : =



T(x, y) + α × DAphasic If ξt−1(Sx) = ξt(Sy) = 1
T(x, y) − αT(x, y) If ξt−1(Sx) = 1 and ξt(Sy) = 0
T(x, y) Otherwise

(6)

for all x ∈ {1 . . . n} and y ∈ {1 . . . n}, and a learning rate α < 1 (results reported here were
obtained with α = 0.2, but other learning rates could also be used). Equation 5 simply pushes
R(S j ) towards the actual reward rt . Equation 6 increases, in a Hebbian fashion, the strength
of the connection between states Sx and Sy if and only if Sy follows Sx. Conversely, the
connection strength is decreased if and only if Sy does not follow the previous state Sx. The
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amount by which the association is strengthened is proportional to the amount of unexpected
Significance in the environment (i.e., DAphasic).

The equations above formally capture a simple hypothesis. First, a “dopamine” signal is
generated that indicates the presence of an unexpected and significant stimulus. This signal,
which for appetitive stimuli is similar to the TD prediction error signal, is then used to update
the stimulus → outcome associations in an internal model.

Results

The model is now used to simulate the contingencies employed by Schultz and colleagues
summarized in Figures 1 and 2. For example, Figures 1a and 1b summarize the firing of
dopamine neurons in a Pavlovian experiment in which a US consistently followed a CS after
a fixed interval of 4 s. The simulation is divided into 60 trials with one CS → US presentation
per trial. Each trial consists of six time steps with the appropriate state being activated in
each time step. The sequence of state activations is: SCS,0, SCS,1, SCS,2, SCS,3, SUS,0. The first
state, SCS,0 is always presented on the first time step of the trial, and SCS,1 is presented on
the second time step, etc. Reward is elicited only on presentation of the US, and the US is
presented for just one time step. Therefore, rt=5 = 1, and r = 0 at all other times in a trial.
The process of generating DAphasic, and then updating R, and T occurs on every time step of
every trial.

Figure 4a shows how the value of DAphasic varies over the course of the simulation. The
simulated firing of dopamine neurons within a single trial can be visualized by taking a
slice perpendicular to the “Trial” axis. On trial 1, the pattern of DAphasic corresponds to
Figure 1a, and by trial 25, the pattern of DAphasic corresponds to Figure 1b. Between trials 1
and 25, the response to the US diminishes while the response to the CS increases. A cardinal
feature of this model, and also TD, is that the DAphasic signal does not transfer directly from
the US to the CS, but must travel back through the intervening states (i.e., SCS,3, SCS,2,
SCS,1). This process is manifested as a low mound that slides back from the US to the CS
as the trials proceed. The height of this mound relative to the peaks at the CS and US is
controlled by a number of parameters such as the number of states in the model and the
learning rates. Although sustained firing of dopamine neurons has been recorded between
CS and US (Fiorillo et al. 2003), this “sliding back” effect is not observed experimentally.
This anomaly remains to be investigated in both model-based and model-free methods.

Figure 1d shows the experimental effect of introducing the US early after conditioning
has occurred, and this effect is reproduced in the model in figure 4a at trial 30. Initially, the
early response generates a signal, but the internal model is quickly adapted. Figure 5a shows
the internal model constructed by trial 25. The CS is labelled “CS1,” and the US is labelled
“Reward.” The transition connections reflect the temporal relationship between the states,
and are used by the look-ahead process to estimate future reward.

Figure 4b shows the results of simulating a similar experiment, but in which the reward
arrives late after a period of training. In trial 1, the pattern of DAphasic corresponds to
Figure 1a. By trial 30, DAphasic corresponds to Figure 1b, and in trial 35 DAphasic corresponds
to Figure 1e. Eventually, the response to the late reward attenuates, as the internal model is
adapted. The model does not account for the below baseline response (c.f. Figure 1e and
see discussion).

Figure 4c shows the results of simulating a more complex experiment in which the model
is first trained for around 40 trials that CS1 predicts a US. Then a second CS2 is introduced
that precedes CS1 by a fixed interval, and training proceeds for another 20 trials. Finally, the
interval between CS2 and CS1 is randomly varied for the last 40 trials. This reproduces the
experiment performed in (Schultz et al. 1992). In both the experiment and the simulation,
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Figure 4. Each panel shows the model’s performance for a subset of the data summarized in Figures 1 and 2. The
simulated phasic dopamine response is plotted against trial and time into trial (see panel (a)). The labels on the
trial axis show the stimuli that were presented at different stages of the session. The labels on the time-into-trial
axis show the time at which those stimuli were presented within each trial. See text for panel details.

the signal of interest moves first from the US to CS1, and then from CS1 to CS2 (the earliest
reliable predictor of the US). When the interval between CS2 and CS1 is varied, a signal
re-appears at the time of CS1. Within the simulation, this re-appearance reflects the internal
model’s uncertainty regarding the time of arrival of CS1. The original experimental result is
summarized in Figures 1f and 1g. Figures 5a–c show the states and the transition connections
of the internal model after training on the three different contingencies of figure 4c. Figure 5d
shows an example of the propagation of activation through the internal model during look-
ahead following presentation of CS2 in trial 80.
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Figure 5. The internal model after training on different environmental contingencies. Each circle denotes a state of
the internal model, presented according to the stimulus/time since onset represented by that state. The connecting
lines show the learned strengths of the transition connections between those states. A maximum transition weight
of 1 is denoted by a thick line, continuously graded in thickness down to a transition weight of 0 denoted by no
line. Only the relevant internal states are shown. The learned reward values, R, are not shown but can be imagined
inside each state. They are zero for all states except the reward state itself (i.e., the US). (a)–(c) show the internal
model after the three stages of Figure 4c. (d) shows the pattern of activation on the state units of 5c during each
stage of the look-ahead process following the onset of CS2. (e) and (f) show the effects of presenting a compound
stimulus as CS.
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Figure 4d shows the results of simulating another experiment in which the US only follows
the CS on 25% of the trials. This experimental effect is summarized in Figure 1h. In both the
original experiment and the model, after training, the response to the CS is approximately
0.25 and the response to the US is approximately 0.75. Although not shown, the model
generalizes appropriately to all p(US|CS). For this experiment, a learning rate of α = 0.1 was
used rather than α = 0.2, in order to allow smoother convergence of the internal model by
reducing susceptibility to the random noise present in the environment.

Figure 2 summarized the effects of Kamin Blocking on the firing of dopamine neurons.
Since blocking involves the simultaneous presentation of more than one stimulus, we extend
the previous model definition. We now calculate DAphasic by summing the existing signal
for each currently active state. i.e., DAphasic = ∑

Surprise(Sj ) × Significance(Sj ) for each ac-
tive state, Sj.. Here, we have indexed the two components of the phasic signal by a state.
Surprise(Sj ) is exactly as given in Equation (3), while Significance(Sj ) is as in Equation
(2) except that the look-ahead process is initiated from state Sj . The result is that the total un-
expected Significance denoted by DAphasic is given by the sum of the individual unexpected
Significances of each simultaneously active state.

The model’s simulation of the blocking of the dopamine signal is shown in Figure 4e.
Initially (trials 0 to 40), the model is trained that stimulus A precedes the US. DAphasic

moves from the US to A in the usual way. Then, from trial 41–75, the model is trained that
the compound stimulus, AX, precedes the reward. During this period DAphasic responds only
to the compound AX. From trial 75 onwards, stimulus X is presented on its own, followed
by the US. The results show that X has not been conditioned during AX → US since DAphasic

responds to the US in trial 75, and not to X. The blocking of DAphasic in response to X is
consistent with the actual experimental data summarized in Figures 2a–d.

Finally, Figure 4f shows the result of simulating the experiment summarized in Figures 2e–
h in which blocking is not observed. This time, initial training consists of pairing a stimulus B
with no consequence. The second phase involves conditioning the compound BY → US. In
both the experiment and the simulation the signal of interest moves from the US to the time
of presentation of BY. The third and final stage involves presenting stimulus Y alone. In the
actual experiment, Y is conditioned (i.e., not blocked), and a dopaminergic response occurs
to Y. In the simulation, trial 60 shows a partial response to both Y and the US indicating that
Y was partially conditioned during BY → US. This partial conditioning occurs in the model
because B and Y must effectively share the prediction of the US, and represents the model’s
simulation of overshadowing (see next section). This overshadowing is not evident in the
original electrophysiological data. Figure 5e shows the internal model that is constructed
during the conditioning of the compound stimulus, BY.

Rescorla–Wagner

The previous section compares the model’s performance with the firing of dopamine neurons.
The current section considers the model’s application to other associative learning data,
focusing on behaviour. One of the most important formal models of the role of prediction
error in associative learning is that of Rescorla and Wagner (1972) (RW). The model of
RW, which draws on the notion of prediction error originally envisaged by Kamin (1969),
provides a classic account of a suite of conditioning phenomena including Kamin Blocking
(KB), Latent Inhibition (LI), and Overshadowing (OS). The relevance of KB to dopamine
neuron firing is demonstrated in Figure 2. Additionally, KB and LI have been shown to
be disturbed in animals and people following dopaminergic manipulations (Solomon et al.



72 A. Smith et al.

1981; Crider et al. 1982; Moser et al. 2000), and in acute schizophrenia in which dopamine
dysfunction is strongly implicated.

The RW rule states that the current change in some conditioned quantity (Q) is pro-
portional to the associability of the CS (φ), the salience of the US (β), and the difference
(prediction error) between the asymptotic value of the conditioned quantity (λ) and the
current value of that quantity (�Q):

�Q = φβ
(
λ −

∑
Q

)
(7)

φ and β act as learning rates and capture observations that a more intense CS (for example), or
a more rewarding US will enhance conditioning rates. Importantly, where there are multiple
simultaneous CSs, all those CSs must share a fixed amount of some conditioned quantity
(λ). This is achieved by summing the current value of the conditioned quantity over all CSs
present (i.e., �Q). The effect of Equation (7) is that: 1) conditioning occurs quickly during
early stages and asymptotes at λ; 2) conditioning occurs faster for intense CS and highly
rewarding US; 3) all appropriate CSs effectively share the conditioned response.

Although not immediately obvious, the model-based approach discussed in the previous
section is inspired by RW, where the conditioned quantity is the strength of the transition
connections, T. This can be seen by substituting Equation 1 into 3, and then Equation 3
into 4 to give:

DAphasic(i.e. �T) = Significance ×
(

1 −
∑

k=1 ...n

ξt−1(Sk) × T(k, j )

)
(8)

where Sj is the current state, and ξt(Sj ) in Equation 3 has been replaced by 1 following
our original assumption that the environment will activate the current state with a value of
1. Now, contrasting with RW, we note that the bracketed part of Equation 7 corresponds
to the bracketed part of Equation 8 (i.e., Surprise) where λ is the asymptotic value of a
transition connection (i.e., 1) and

∑
Q is the current degree to which the current state, Sj,

was predicted by the internal model. In Equation 8, the salience of the current state (which
might be a US, but need not be in the general case) is given by Significance. The more
reward elicited by or predicted by this current state, the faster conditioning occurs. The only
RW parameter not currently accounted for is the associability of the CS, φ. This RW-like
“dopamine signal” is then used to update T(x, y) in Equation 6 (top) in a manner that will
help the model generalise to the range of data already captured by RW, including LI, KB
and OS.

LI, KB and OS are all behavioural phenomena. A very simple additional assumption
allows the model to be extended from one of neuron firing to one of behaviour. In most
formal reinforcement models, estimated future reward drives machine behaviour (Sutton &
Barto1998). It has already been suggested (McClure et al. 2003) that the formal quantity of
estimated future reward can also be interpreted as an abstract measure of animal motivation or
incentive salience following (Berridge & Robinson 1998). Although over simplifying animal
behaviour, the basic principle that an animal is motivated by the future reward predicted
by a stimulus is both intuitive and convenient for formal reinforcement learning models of
behaviour. The approach is particularly convenient here because it allows us to interpret
Significance as corresponding to the degree to which an animal is motivated to achieve
reward, avoid punishment or suppress an ongoing response, etc., based on the expected
future rewards of a CS. Under this assumption, the model is now applied to LI, KB and OS.
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Latent inhibition

Latent inhibition refers to a subject’s increased difficulty to form a new association between
a stimulus and a reward due to prior exposure of that stimulus without consequence (Lubow
& Moore 1959; Lubow 1973). The behavioural hallmark of LI is retarded conditioning
of the pre-exposed stimulus, and is thought to reflect the ability of an organism to ignore
irrelevant stimuli (Lubow 1989). In two pivotal studies, Solomon et al. (1981) and Weiner
et al. (1981) both reported the disruption of LI (failure of pre-exposure to retard subsequent
conditioning) in animals treated with the dopamine enhancing agent, amphetamine.

It is traditionally thought that non-reinforced pre-exposure of a stimulus reduces its as-
sociability with other stimuli (Rescorla & Wagner 1972; Mackintosh 1975). This can be
modelled in the current context by inserting RW’s associability parameter of Equation 7 at
the appropriate point in the update equation for T:

T(x, y) :=



T(x, y) + α × φ(Sx) × DAphasic If ξt−1(Sx) = ξt(Sy) = 1
T(x, y) − αT(x, y) If ξt−1(Sx) = 1 and ξt(Sy) = 0
T(x, y) Otherwi s e

(9)

where φ(Si ) is the associability parameter of state Si (different stimuli could have different
associabilities). The default associability is 1, but this value is reduced following pre-exposure,
thus retarding conditioning. We have abstracted over the debated mechanisms by which the
reduction in associability might actually occur.

Figure 6 (left) shows an experimental example, provided by Weiner et al. (1988), of how
conditioning of the pre-exposed stimulus (labelled PE) is retarded in comparison with a non
pre-exposed stimulus (labelled NPE). Figure 6 (right) demonstrates the same performance

Figure 6. (left) Adapted from Weiner et al. (1988). Performance in an active conditioned avoidance task is plotted
against the number of conditioning sessions (10 trials per session) in this on-baseline assessment of LI. PE = the
group was pre-exposed to the CS; NPE = the group was not pre-exposed to the CS. When amphetamine was
administered during conditioning then both groups condition more quickly, leading to a reversal of LI in the
PE(amph) group. (right) Model simulation shows the expected future reward (Significance associated with the
CS during conditioning). The bracketed numbers in the legend respectively indicate the values of φ (CS associability
and π (dopamine manipulation) used for that simulation. The model posits that amphetamine (π > 1) enhances
conditioning speed, pre-exposure (φ < 1) retards conditioning speed, in combination these manipulations will
approximately cancel, but that an asymptotic conditioned significance of 1 will always eventually be achieved given
enough conditioning. A simulated CS-US interval of 2s was used, with a learning rate α = 0.025, and R(US = 1).
These parameters were hand-selected for the best quantitative match with the experimental data, but importantly
the qualitative nature of the results is not dependent on these parameters.
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in the model. The experimental data also show that amphetamine (an indirect dopamine
agonist) enhances conditioning rate in both PE(amph) and NPE(amph) groups. In general,
amphetamine disrupts LI (Weiner et al. 1988), while haloperidol (a dopamine antagonist)
facilitates LI (Weiner & Feldon 1987; Weiner et al. 1987). LI disruption is indicated by
amphetamine’s ability to restore the conditioning rate in the PE(amph) group, to that of
the un-treated NPE group. Note that acute pharmacological treatments appear to be most
effective during the conditioning phase (Moser et al. 2000; Weiner 1990).

One obvious approach to modelling pharmacological dopamine enhancement is to mul-
tiply DAphasic by a factor, π > 1. In this way, blocking the re-uptake of the neuromodulator
via amphetamine is represented in the model by enhancing the impact of DAphasic . Setting
π > 1 (simulating dopamine enhancing treatments) will increase the conditioning rate, while
π < 1 (simulating dopamine reducing treatments) will decrease the conditioning rate in both
pre-exposed and non-preexposed groups (Weiner et al. 1987, 1988). Since π and φ are both
coefficients of DAphasic in the rule for updating T, simulating amphetamine in this way will
act to reverse the effect of pre-exposure on conditioning speed, thus disrupting the LI effect
see Figure 6 right.

Killcross et al. (1994b) demonstrated that pre-exposure and dopamine blockade mutu-
ally contribute to the expression of LI. For example, they concluded that: “DA-antagonists
enhance the magnitude of an LI effect by producing a retardation in conditioning following
fewer pre-exposures than are typically required.” (p. 199). They also find that increasing the
US intensity reverses LI, and conclude here and elsewhere (Killcross et al. 1994a) that LI
results from dopamine-reinforcer interactions. If we look back at Equations 9 and 4, then we
see that there are three coefficients of conditioning on presentation of the US: φ (CS pre-
exposure), π (dopamine manipulation), and Significance (US magnitude, since for the US
we can ignore the look-ahead process). Therefore, increasing the number of pre-exposures,
blocking dopamine, and decreasing the US magnitude will all act to retard conditioning
and vice-versa. Different combinations of these parameters are predicted to interact in a
multiplicative manner.

Kamin blocking

KB refers to the observation that prior conditioning of a neutral stimulus (blocking CS)
renders another stimulus (blocked CS) less effective in subsequent conditioning when both
are presented in compound (Kamin 1968, 1969). KB has already been demonstrated within
the model for DAphasic . In Figure 4e, following conditioning of A →US, there is no pre-
diction error at the US during subsequent presentations of AX → US, and therefore no
conditioning of the transition connection between X and the US. The Significance of X,
if presented alone, will be 0 because all the transitions to the US come from A and no tran-
sition connections are formed from X. Under our initial assumption that Significance can
be interpreted as any behaviour measure of conditioning, Significance(X) = 0 represents
the classic blocking effect reported in (Kamin 1969). In Kamin’s original experiment, A is
a noise, X is a tone, the US is a shock, and the conditioning of X is measured by licking
suppression. X fails to elicit any licking suppression.

The impact of dopamine manipulations on KB is critical for the current exposition of
prediction error and the role of dopamine therein. However the literature is equivocal. For
example, Crider et al. (1986) demonstrated blocking disruption in rats following chronic
haloperidol treatment (leading to dopamine receptor super-sensitivity), but this treatment
obscures the stage (A →US or AX → US) during which disruption takes place. O’Tuathaigh
et al. (2003) found KB disruption in response to acute amphetamine treatment during the
compound conditioning phase, while others (Ohad et al. 1987) found that acute treatment at
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either stage, but not both, disrupted KB! This is in contrast to Crider et al. (1982) who found
KB disruption following chronic amphetamine treatment (i.e., in both stages). Finally, Jones
et al. (1997) failed to find support for KB in people being sensitive to administration of low,
acute doses of amphetamine. More detailed and consistent experimental data will determine
whether dopamine manipulations are appropriately modelled as a multiplicative factor as
proposed above, or whether they should be modelled as an additive factor for example.

Overshadowing

If two stimuli (CS1 and CS2) are conditioned simultaneously as a compound stimulus,
then they will share their association with the US. Moreover, if one stimulus is stronger,
then it will grab a greater portion of the association. This is the basic OS effect (Pavlov
1927). According to RW, the asymptotic strength of the association between CS1 and the
US will be proportional to φ(CS1)

φ(CS1)+φ(CS2) , where φ defines the intrinsic associability of each
stimulus. Figure 5e shows the internal model after conditioning of a compound stimulus
where φ(CS1) = φ(CS2), and Figure 5f shows the model when φ(CS2) = 2 × φ(CS1). As a
result, the transition connections from CS2 are twice the strength of those from CS1.

Mackintosh (1976) conditioned a compound light-noise stimulus to a shock in four groups
of rats, with a different noise volume in each group. The strength of the association learned
between the noise and the US, and the light and the US, was measured by the subsequent
degree of licking suppression elicited by each CS presented on its own. The results are sum-
marized in Figure 7 (left). The details of Mackintosh’s experiment are easy to simulate by
fixing φ(Light) = 1, and varying φ(Noise). Then, after the internal model has been con-
structed during conditioning, Significance(light) and Significance(noise) can be plotted
against φ(noise) as in Figure 7 (right). The model easily simulates the experimental data.
Experimentally, it is currently unclear how dopamine manipulations affect OS.

Figure 7. (left) Overshadowing data adapted from (Mackintosh 1976). Six groups of rats were used. The first
four (50dB, 60dB, 75dB, 85dB) were trained that a compound stimulus (light and noise) predicted a shock. In
each group, the noise was a different volume indicated by the group name. The fifth group (L) was trained that
just a light predicted a shock, and the sixth group (N) was trained that just a noise predicted a shock. The graph
shows the degree to which each of the two stimuli (presented alone) subsequently suppressed licking (a standard
measure of the degree of learned association between CS and US). A value of 0 indicates no suppression, while
a value of 1 indicates complete suppression. The basic finding is that the individual components of a compound
stimulus must apparently share the degree to which they predict the US (right). Because of the RW-like approach
adopted by the model, comparable performance is simulated. The ordinate shows the significance of the relevant
stimulus as denoted by Significance (light) or Significance (noise). The compound groups were simulated by
using R(US) = 0.72 (maximum) experimentally observed suppression, a fixed value of φ (light) = 1, and φ (noise)
as indicated on the abscissa. These were selected for the best quantitative match, but the qualitative nature of the
results is not dependant on these parameters. The height of each bar agrees with the prediction of RW—for example,
when φ (noise) = 0.33, Significance (noise = 0.33

1+0.33 × R(US) etc.
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Figure 8. (Left) Adapted from (Kamin 1969). Suppression effect of four different stimuli plotted against the number
of acquisition trials during conditioning to a shock. This time, a value of 0.5 indicates no suppression while a value
of 0 indicates complete suppression of the ongoing behaviour (bar pressing for food). The main observations are
that the less intense 50dB noise conditions more slowly than the more intense 80dB noise, the light conditions
at around the same rate as the 80dB noise, and the compound stimulus conditions fastest of all. (Right) shows
the model’s performance under similar conditions. Again, Significance is plotted for the relevant CS. The circles
show the rate of conditioning when a single stimulus is used with φ (CS) = 1. The triangles show the effect of
φ (CS) = 0.5, simulating a less intense stimulus. The squares show the effect of using two CSs both with φ = 1.
Conditioning occurs more quickly because the “unexpected significance” is absorbed at twice the rate by the model.
The S-shaped curve is a consequence of the time taken for the internal model to be constructed. In this simulation,
R(US) = −1 so that the direction of the plots corresponds to the suppression ratio metric used by Kamin (1969).

Finally, it is generally observed that an intense stimulus will condition faster than a weaker
one, and that a compound stimulus will condition more quickly than either stimulus on its
own (Kamin 1969; Mackintosh 1976). Figure 8 demonstrates this both experimentally and
within the model.

Incidentally, the plotted Significance values in Figures 6, 7 and 8 are also predictions of
the DAphasic response to the relevant CS. So far, the firing patterns of dopamine neurons in
OS and LI paradigms have not been reported.

Discussion

Learning vs. behaviour

The model is based on the popular hypothesis that dopamine provides a prediction error
signal for driving learning. However, manipulation of the mesolimbic dopamine system after a
reward-based behaviour has been learned, also affects that behaviour. For example, Berridge
and Robinson (1998) rendered rats aphagic by almost completely depleting dopamine in the
nucleus accumbens and the neostriatum. These rats did not learn to become aphagic—they
spontaneously stopped eating. This and other data led to rejection of the “reward learning
and associative prediction” hypothesis of mesolimbic and neostriatal dopamine function.
An alternative explanation places these dopamine systems at the heart of motivational or
incentive salience processes (Salamone et al. 1997; Berridge & Robinson 1998; Ikemoto &
Panksepp 1999). In an attempt to resolve this conflict, Parkinson et al. (2002) have suggested
that the phasic dopamine signal could provide the teaching signal necessary for learning,
while the background or tonic dopamine response (Grace 1991) could be required for the
expression of previously acquired behaviours.
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Having already addressed the role of phasic dopamine in reward-learning (in which param-
eters such as T and R are adapted), can the model-based approach also supply a role for tonic
dopamine in motivational processes? In answering this question, we consider an interesting
property of mesolimbic dopamine manipulations. Where an animal is faced with a choice
between a large “distal” reward and a small “proximal” reward, ventral striatal dopamine
depletion will apparently shift the preference in favour of the small “proximal” reward. For
example, if a rat is trained in a T-maze that one arm yields two food pellets and the other arm
yields four pellets but behind an obstruction, the animal may select the obstructed food under
normal conditions. However, after dopamine is depleted in the nucleus accumbens, the rat
spontaneously switches to the unobstructed arm of the maze providing less reward (Cousins
et al. 1996). Other examples suggest that similar shifts towards “proximal” rewards are ob-
served even when the motoric component of each option is equal. For example, impulsivity
studies reveal that when rats are faced with the choice of two levers—one yielding a large
reward after a long delay and the other yielding a small reward after a short delay—their pref-
erence can be shifted towards the immediate reward by systemic dopamine depletion (Wade
et al. 2000) or by ventral striatal lesions (Cardinal et al. 2001). Conversely, their preference
can be shifted towards the delayed alternative by a dopamine enhancing agent such as am-
phetamine (Richards et al.1999; Cardinal et al. 2000). The selectivity of dopamine manipula-
tions on distal outcomes is also observed in conditioned avoidance paradigms (Maffii 1959).

The question now becomes: can a “non-learning” role for tonic dopamine be proposed
within the model that explains not just the effect of dopamine blockade on motivation, but
also the selectivity of such manipulations on distal outcomes? We have already discussed
how the formal quantity of future reward can be interpreted as incentive salience. Within
the model, future reward is generated by the look-ahead process, and so this is where tonic
dopamine is introduced. A parsimonious solution is to introduce a new term in Equation (1)
such that tonic dopamine modulates the ability of the look-ahead process to generate future
reward. This is achieved by multiplying the previously acquired transition strengths by a new
term, DAtonic:

ξ̂ v+1
t (Si ) =

∑
j=1 ...n

ξ̂ v
t (Sj ) × {T( j, i) × DAtonic} (10)

Under normal conditions, DAtonic = 1 and the look-ahead process proceeds in a frictionless
manner. However, under treatments reducing tonic dopamine (DAtonic < 1) the activity of the
states decays on each new cycle of the look-ahead process. Note that DAtonic only modulates
the efficacy of the transition connections, and does not directly change either T or R. Modifi-
cation of the transitions is still mediated by DAphasic . Since the generation of future reward is
dependent on the activity of the states during look-ahead (Equation (2)), temporary disrup-
tion of DAtonic will temporarily reduce the future reward or incentive salience of a CS. The
advantage of Equation 10 is that not only will reducing DAtonic reduce incentive salience, but
reducing DAtonic will have a particularly pronounced effect on incentive salience for distal re-
wards. This is because the dampening effect of DAtonic accumulates over successive iterations
of the look-ahead process. In this way DAtonic is proposed to play the role of an online “dis-
count factor” (see formal reinforcement learning accounts, e.g. (Sutton and Barto 1998)).

Using an internal model to account for the distance-dependent effects of manipulation of
the ventral striatal D2-receptor was conceived before the current model of phasic dopamine.
In an early account (Smith et al. 2005), which reviews a range of “proximal vs. distal”
dopamine data, the role of phasic dopamine in reward learning and associative prediction was
ignored, and it was assumed that the appropriate internal model was already constructed.
In the current model, reward learning and incentive salience have been formally brought
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together in a dual model of phasic and tonic dopamine function. In summary, we propose that
phasic dopamine is responsible for the formation of, and tonic dopamine for the subsequent utilization
of, the transition connections of an internal model whose role is to represent salient contingencies for
the purposes of motivating behaviour.

Neural substrates: speculations

Based on experiments involving manipulation of either the ventral striatum, the D2-receptor
subtype, or both, we have previously argued that the ventral striatum (and the D2 receptor) is
a promising candidate for the dopaminergic modulation of the transition connections (Smith
et al. 2005). A range of electrophysiological, behavioural and imaging studies implicate
ventral striatal activity not just in learning about rewards (Pennartz 1996; Schultz 1998;
Wilkinson et al. 1998; Wise 2004), but also in the anticipation of appetitive and aversive
outcomes (Schultz et al. 2000; Jensen et al. 2003; O’Doherty et al. 2003, 2004; Seymour et
al. 2004). In short, the model predicts that tonic dopamine blockade in the ventral striatum
reduces motivation for future rewards, and reduces motivation for distal future rewards more
than motivation for proximal future rewards.

The reward values associated with each state, R(Si ), and the estimate of future reward
(Significance) are plausibly represented in the OFC and basolateral amygdala (BLA) which
have both emerged as key brain regions in associating rewards with stimuli (Rolls 2000;
Tremblay & Schultz 2000). It has been suggested that the OFC in particular is crucially
involved in the motivational control of goal-directed behaviour (Schultz et al. 2000), learning
about rewards (Dias et al. 1996; Rolls 2000), and evaluating alternatives (Bechara et al. 1998;
Schultz et al. 2000; Arana et al. 2003) via a common neural currency (Montague & Berns
2002). In summary, it is suggested that the states and associated reward values are accessed
in the OFC/BLA, and the “next look-ahead state” is accessed via the transition connections
in the striatum. In this way, iterations of the look-ahead process are suggested to involve the
cycle of activity around the OFC → Striatal → OFC loop.

Impulsivity and “delay-discounting” studies are particularly relevant to this hypothesis.
For example, physical or dopaminergic manipulation of the OFC → Striatal → OFC loop
would be expected to have a greater impact on distal rewards because more cycles around
the loop are required to implement the look-ahead. In a highly relevant investigation of the
interaction between amygdala lesions and ventral striatal dopamine in rats, (Cador et al.
1989) conclude that the BLA plays a qualitative role in stimulus → reward associations
(possibly R(Si ) in our model), while ventral striatal dopamine modulates the magnitude of
this role (possibly DAtonic modulation of T in our model). Studies correlating dopaminergic
(Richards et al. 1999; Wade et al. 2000; deWit et al. 2002), ventral striatal (Cardinal et al.
2001) and OFC (Bechara et al. 1998; Mobini et al. 2002) manipulations with changes in
impulsivity and delay discounting are all consistent with the proposed neural substrate of the
model. In summary, the OFC → Striatal → OFC loop, as discussed in Robbins and Rogers
(2000) for example, is well organized to implement a dopamine-modulated, model-based,
motivation system of the kind discussed here.

Hippocampal lesions have been shown to disrupt blocking (Solomon 1977), possibly by
causing the US to remain surprising even after conditioning of the blocking stimulus (Rickert
et al. 1978). In terms of the current model, this suggests that the hippocampal area could
be implicated in the generation of the Surprise component of DAphasic , and indeed Gray
(1982) has proposed that the hippocampus acts as a comparator of predicted and actual
events. Hippocampal lesions have been shown to disrupt mismatch detection in rats (Honey
et al. 1998), and in an fMRI study, Ploghaus et al. (2000) found that hippocampal activity
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correlated with the occurrence of unexpected events. However, as far as the current model
is concerned, all these potential neural substrates remain highly speculative.

Predictions

At the heart of both model-free and model-based reinforcement learning techniques is the
estimation of future reward and the generation of prediction error. However, one important
feature of the model-based approach is that future reward is dynamically recalculated on every
stimulus presentation, whereas in model-free learning (e.g., TD) this value is pre-calculated
during prior exposure to that stimulus. This leads to some unique predictions from the
current model-based account. First, if an animal expects a reward of type A following an
appropriate CS, but instead receives a reward of type B that is approximately equal in reward-
magnitude, then only the model-based account predicts a phasic response to the reward
itself. Under these circumstances, the type of US is surprising in the model-based approach,
whereas in the model-free approach the only value of interest is the quantity of reward,
and this is not surprising. Second, according to the current model, blocking dopamine D2-
receptors (possibly in the ventral striatum) is expected to attenuate dopamine neuron firing
in response to a CS. This is because DAphasic is dependent on the Significance of the CS,
which is calculated by the look-ahead process, which is itself dependent on DAtonic.

Although dopamine neurons appear to preferentially respond to appetitive stimuli
(Mirenowicz & Schultz 1996), voltammetry and microdialysis data (see Joseph et al. (2003)
for a review), have been used to argue that dopamine is released in response to a wide range
of salient events (Horvitz 2000, 2002), where salience is characterized by the presence of not
just appetitive, but also aversive properties. Although latest evidence supports the hypothe-
sis that dopamine neuron firing is restricted to rewarding events (Ungless 2004), dopamine
neuron firing and dopamine release may in fact be doubly dissociable (Grace 1991; Garris
et al. 1999; Kilpatrick et al. 2000), suggesting additional complexities that remain poorly
understood. From a behavioural point of view it is interesting that dopamine blockade leads
to disruption of responses to aversive as well as appetitive CS (Courvoisier 1956)—a fact
that has been used to test potential clinical efficacy of antipsychotic drugs for many years.
In the current model, one potentially useful consequence of separating reward from out-
come is that the definition of Significance is easily extended to include aversive stimuli.
Following the usual convention of representing aversive events by R(US) < 0, Equation (2)
can be changed to sum the absolute values of R(US) when generating Significance. Un-
der these circumstances, DAphasic responds to a wider range of events that include stimuli
that are either immediately rewarding or punishing, or predictive of rewarding or punishing
outcomes—i.e., any stimulus that is important to a useful internal model of the environment.
This leads to a third prediction: if a CS precedes both an aversive and an appetitive outcome,
then the model-free approach predicts a cancellation effect, while the model-based approach
predicts an enhanced phasic response to that CS.

Limitations

The discussion has been boiled down to basic associative components and any discussion of
how animals might select different actions (also termed the policy in formal reinforcement
learning accounts) has been avoided. Future work is required to consider the more general
case where the internal model represents action choices as well as stimuli and rewards. In
this respect, model-free methods are further advanced (Montague et al. 2004). Also, the
below baseline firing of dopamine neurons (Figure 1c and 1e) has not been modelled, and
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further work is required to address a possible role for the sub-baseline response in extinction
of the transition connections for example. Third, the current account provides, at best, only
a highly abstract model of real neural processes. For example, the method must perform
actual vs. predicted outcome comparisons concurrently with the look-ahead process, and
therefore cannot be considered as “real-time.” Fourth, the gradual “sliding back” of the
prediction error from the US to the CS, as seen in Figure 4, is not observed experimentally.
This failure needs to be addressed in both model-based and model-free approaches to mod-
elling dopamine neuron firing with reinforcement learning methods. Finally, other dopamine
hypotheses have been proposed that eschew the notion of prediction error altogether. For
example, Redgrave et al. (1999) propose an alternative “switching” hypothesis that accounts
for the short time scale response of dopamine neurons to novel stimuli—a response that
apparently precedes full identification of those stimuli and their rewarding properties.

Psychosis as a failure of prediction error

Multiple lines of evidence suggest that psychosis, within the context of schizophrenia, results
from a dysregulation of mesolimbic dopamine function (Weinberger 1987; Grace 1991; 2000;
Moore et al. 1999). For example, repeated administration of dopamine enhancing drugs such
as amphetamine can induce psychosis in otherwise healthy people (Bell 1973; Connell 1958),
and the correlation between a drug’s antipsychotic efficacy and the ability of that drug to
block the dopamine D2-receptor is striking (Seeman & Lee 1975; Kapur & Mamo 2003).
However, the links between mesolimbic dopamine dysfunction and the clinical symptoms
of psychosis (such as delusions) are not well understood. In terms of associative learning,
KB and LI may be disturbed in acute schizophrenia (Baruch et al. 1988; Gray et al. 1995;
Jones et al. 1992; Jones et al. 1997; Moran et al. 2003; Vaitl and Lipp 1997)—although see
also (Lubow et al. 1987; Swerdlow et al. 1996; Williams et al. 1998) for counter evidence—
and LI has enjoyed some acceptance as a model of the processing deficits associated with
the disorder. Therefore, formally linking prediction-error models of dopamine neuron firing
with classical models of associative learning is seen as an important step towards a better
understanding of the pharmacology and psychology of acute schizophrenia.

Maher and Ross (1984) suggested that delusions, a hallmark of thought disturbance in
schizophrenia, are aberrant associations that the patient conceives in an attempt to explain
unexpected observations: “. . . delusions represent explanations of anomalous experiences
and the processes whereby the delusional belief is formed are similar in all essential respects
to those that operate in the formation of normal beliefs . . . ” (p. 404). The model-based
approach proposed here provides a formal interpretation of such a process, in which an
aberrant phasic dopamine response inappropriately labels internal and external events with
the tag of surprising or unexplained significance. The normal response to this dopamine
signal is then invoked—that is to construct an internal model that will reduce the phasic
response next time. The aberrant internal model is effectively constructed as an explanation
for the mislabelled event, and forms the basis of a delusional belief. Antipsychotic drugs
(all of which currently block dopamine) may act to protect against the formation of these
aberrant internal associations by attenuating the impact of the phasic response, and could
also dampen the motivational efficacy of existing associations via attenuation of the tonic
response (as in Equation 10).

Conclusion

Here, in conjunction with Smith et al. (2005), we have attempted to integrate electrophys-
iological, behavioural and pharmacological data within a computational framework that is



Dopamine, prediction error and associative learning 81

founded on existing formal notions of prediction error. We conclude that model-based re-
inforcement learning has significant potential for addressing a wide range of experimental
observations, and also for linking neuromodulator dysfunction with disturbances of thought
in human disorders such as schizophrenia.
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