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Abstract

Supervised learning procedures for neural networks have recently met with considerable
success in learning difficult mappings. So far, however, they have been limited by their poor
scaling behaviour, particularly for networks with many hidden layers. A promising alternative
is to develop unsupervised learning algorithms by defining objective functions that characterize
the quality of an internal representation without requiring knowledge of the desired outputs of
the system. Our major goal is to build self-organizing network modules which capture important
regularities in the environment in a simple form. A layered hierarchy of such modules should be
able to learn in a time roughly linear in the number of layers. We propose that a good objective
for perceptual learning is to extract higher-order features that exhibit simple coherence across
time or space. This can be done by transforming the input representation into an underlying
representation in which the mutual information between adjacent patches of the input can be
expressed in a simple way. We have applied this basic idea to develop several interesting learning
algorithms for discovering spatially coherent features in images. Our simulations show that a
network can discover depth of surfaces when trained on binary random dot stereograms with
discrete global shifts, as well as on real-valued stereograms of surfaces with continuously varying
disparities. Once a module of depth-tuned units has developed, we show that units in a higher
layer can discover a simple form of surface interpolation of curved surfaces, by learning to predict

the depth of one image region based on depth measurements in surrounding regions.

1 Introduction

The mammalian perceptual system can recognize complex stimuli with remarkable speed and robust-
ness. So far, the performance of computational models of perceptual skills such as the recognition
of continuous speech and complex scenes has fallen far short of the performance level of humans on

these tasks. How does the brain achieve such remarkable pattern recognition abilities? A partial



explanation may be that the brain undergoes substantial self-organization as the young animal grad-
ually learns to find regularities in the complex patterns of stimuli which it encounters. By examining
the ways in which the brain employs self-organizing principles, we can gain some insight as to how

we should design efficient, and biologically plausible computational models of learning.

1.1 Evidence of activity-driven self-organization in the brain

There is substantial evidence that brain development and perceptual functioning are markedly af-
fected by exposure to structured environmental input. In this section, we briefly review some of the

neurophysiological evidence for these claims. For a more extensive review, see (Miller, 1990).

Much of the evidence comes from single cell recordings in the primary visual cortex of cats (Area
17) and more recently, cell recordings in primate visual and somato-sensory systems. In several
mammals, visual cortical neurons have been found to be tuned to a variety of stimulus features such
as orientation (i.e., some cells respond maximally to edges or bars of particular orientations), spatial-
frequency, velocity and direction of movement, and binocular disparity. The fine-tuning of the visual
system to some of these features occurs primarily during certain “sensitive periods of development”

early in life, and can be disrupted if an animal is reared in an impoverished environment.

When kittens are raised in environments containing only vertical or horizontal contours, cortical
cell populations exhibit orientation selectivities which are skewed in favor of those particular con-
tours to which the animal was exposed(Blakemore and van Sluyters, 1975; Blakemore and Cooper,
1970; Hirsch and Spinelli, 1970). However, since orientation tuning is present in visually inexperi-
enced kittens (Hubel and Wiesel, 1963), it is unclear whether the effect of distorted environmental
input is to actually alter the orientation selective response of single cells (e.g., via a competitive
activity-dependent process), or to simply cause deterioration of these cells as a consequence of their

disuse(Miller, 1990). Spatial-frequency tuning of feline cortical cells is also influenced by early visual



experience: while no visual input is necessary for normal development of spatial-frequency selectiv-
ity during the first three weeks, the subsequent fine-tuning of frequency sensitivity which normally

occurs in weeks 4-8 is blocked if the cat is deprived of patterned input (Derrington, 1984).

Another widely studied developmental phenomenon in the cat’s visual cortex is the appearance
of ocular dominance columns (ODCs); after normal binocular visual experience, cortical cells which
receive input from both eyes eventually segregate into alternating eye-specific patches. This effect
can be strongly influenced by environmental factors: when a cat is subjected to monocular depriva-
tion, particularly during the second postnatal month, cortical cells become almost exclusively and
irrecoverably responsive to input from the exposed eye (Wiesel and Hubel, 1965; Olson and Free-
man, 1980). However, if both eyes are deprived of exposure to patterned input (e.g., in dark-reared
and eyelid-sutured kittens), there is evidence that ocular dominance segregation may still occur to a
some degree (Stryker and Harris, 1986). It is possible that spontaneously generated, random input
from retinal cells may be a factor; when retinal ganglion cell activity is completely blocked with a
drug called tetrodotoxin during the period in which ocular segregation normally occurs in the cortex,

ODC:s fail to develop (Stryker and Harris, 1986).

There is similar evidence of activity-dependent development in primate perceptual systems. For
example, monkeys with optically induced strabismus (a misalignment of the two eyes, either conver-
gent or divergent) early in life, followed by three years of normal binocular experience, have a marked
reduction in the number of cortical binocular cells (in both areas V1 and V2) and are behaviourally
stereoblind (Crawford et al., 1984). Interestingly, children with esotropia (convergent strabismus, a
condition commonly referred to as “cross-eyed”) in infancy, which is surgically corrected between
10-13 years of age, perform identically to the strabismic monkeys on stereopsis tasks (i.e., they
are clinically stereoblind), suggesting the possibility of a similar critical period in humans for the

development of binocular vision (Crawford et al., 1983).

Cortical reorganization occurs not only during sensitive periods early in development, but contin-



ues through the lifetime of an animal, as a result of changing environmental demands. For example,
Merzenich and his associates (1987) have studied plasticity in the somato-sensory cortex of adult
owl monkeys (for a review, see (Merzenich et al., 1988)); neurons in this region of the brain respond
to tactile input from local areas of the skin surface, forming roughly a topographic map of the body.
Merzenich’s group has extensively studied cells whose receptive fields correspond to regions of skin
surface on the hand (in Area 3B); these receptive fields change drastically when the spatio-temporal

correlations of tactile stimulation are experimentally varied.

It is possible that cortical cells employ some very general, sensory modality-independent orga-
nizing principles in developing their characteristic responses to patterned input. Startling evidence
for this possibility comes from an unusual study in ferrets (Sur, Garraghty and Roe, 1988). Nerve
fibers from the primary visual pathway were artificially redirected into the auditory cortex, and
these visual inputs formed synaptic contacts with cells in the auditory cortex. After the ferrets were
reared to adulthood, the majority of “auditory” cortical cells tested had become visually driven,

some having center-surround response characteristics similar to cells in the visual cortex.

The ability to develop a set of environmentally tuned feature detectors is of clear adaptive
advantage. The organism need not have a completely genetically predetermined perceptual system;
rather, the primitive organization laid out by the genetic blueprint can be fine-tuned after birth, as
the statistics of the environment, and even the physical properties of the organism’s own sensors (e.g.,
the distance between the two eyes, two ears etc.) change over time. Once an environmentally tuned
set of feature detectors has been learned, important features of the world such as local variations in
position and depth can be quickly extracted by individual cells or cell populations in parallel. The
response of these cells can then serve as a preprocessed input to higher layers, which can in turn

self-organize to form still more complex representations.



1.2 Computational models of learning

Motivated by the evidence of activity-dependent self-organization in the brain, described above, and
by the poor scaling behaviour of supervised learning procedures, our goal is to discover ways in
which artificial systems can perform unsupervised learning. By discovering good solutions to this
problem in simulated networks of neuron-like processing elements, we hope to cast light on how the

brain may solve the same problem.

Much of the current research on computational models of learning in neural networks focuses on
learning algorithms in which the network learns from an external teacher. The goal of the network
is to learn some prespecified mapping, so that the output of the network matches the teaching signal
on each case. Supervised learning algorithms have met with considerable success in solving some
difficult tasks, such as sub-problems of speech recognition (e.g. (Lang and Hinton, 1988; Watrous
and Shastri, 1987)) and image understanding (e.g. the recognition of hand-drawn digits (Le Cun
et al., 1989). However, these algorithms have so far been limited by their poor scaling behaviour,
particularly when applied to full-scale real world problems (like continuous speech recognition) which
require large networks with many hidden layers. Additionally, they tend to find problem-specific

representations which may not carry over well to new situations.

One solution to these problems may be to make use of unsupervised learning, as the brain
apparently does: rather than trying to solve difficult problems in one stage by training a large
multi-layer network, we can subdivide the problem. First we build adaptive preprocessing modules
that can capture some of the interesting features in the environment, and form representations of
a simpler form than the raw, unprocessed input. Modules can then be assembled hierarchically to
extract features of progressively higher order. Finally, once the hierarchy of unsupervised modules
has extracted the important underlying causes of the perceptual inputs, we add supervised modules
on top which can quickly learn to associate responses with the causes of the perceptual input rather

than the input itself.



1.3 Related work on unsupervised learning

Various approaches have been taken to modeling unsupervised learning processes. In this section, we
briefly review examples of two major approaches. We then discuss what type of data distributions
each is best at modeling, and finally, what kind of representation should be extracted to be useful

for further stages of learning.

1.3.1 Clustering algorithms

An example of a fairly simple, yet impressive application of the idea of using an unsupervised
preprocessing layer to speed up subsequent supervised learning is the recent work of Moody and
Darken (1989). They trained an adaptive preprocessing layer of Gaussian units by a standard k-
means clustering algorithm; an additional layer of units was then trained by a supervised learning
procedure (mean squared error minimization) to solve several difficult problems: phoneme recog-
nition and chaotic time series prediction. They report that this hybrid algorithm results in about
two orders of magnitude speedup in the learning time compared to pure supervised learning with
back-propagation. The layer of Gaussian units speeds learning for two reasons: Firstly, two very
different input vectors will tend to activate non-overlapping sets of Gaussian units, so there will be
no interference (generalization) between these two training cases. Secondly, the incoming weights of
Gaussian units do not depend on the outgoing weights so there is modularity of learning between

these two layers of weights.

Many algorithms have been developed for unsupervised learning in artificial neural networks.
Many of these are variants of statistical clustering algorithms and are generally referred to as com-
petitive learning procedures (e.g. (Grossberg, 1987; Von der Malsburg, 1973; Rumelhart and Zipser,
1986; Kohonen, 1982; Fukushima, 1975)). Clustering algorithms such as k-means or competitive
learning are useful when the goal is to find a limited number of prototypes in high-dimensional

data. Each competitive unit or module comes to encode the centre of a cluster of data points in a



high-dimensional space, and considerable dimensionality reduction can be achieved, provided that
the data points all lie on or near a lower-dimensional surface (Steve Nowlan, personal communica-
tion). With a more elaborate architecture employing recurrent connections, Grossberg’s version of
competitive learning (Grossberg, 1987; Carpenter and Grossberg, 1987) continuously adapts to new
inputs, while maintaining relatively stable representations, and with some parameter-tuning, gives
one control over the plasticity-stability tradeoff. Recently, a “soft competitive learning” method has
been proposed (Nowlan, 1990); rather than only allowing the winner to adapt, each unit can adapt
its weights for every input case, so that as a group the units form a good multi-modal model of the

underlying distribution.

1.3.2 Principal components analysis

Another major approach to unsupervised learning is based on the objective of representing the prin-
cipal components of the input distribution.! Several researchers have developed learning algorithms
which accomplish part or all of this task. Oja (1982) showed that a normalized version of the simple
Hebbian learning rule allows a unit to extract the first principal component of the input. Extending
this idea, Oja’s Subspace learning algorithm (Oja, 1989) finds a set of k£ weight vectors which span
the same subspace as the first k& principal components. The same is true of the weights learned
by an auto-encoder (Baldi and Hornik, chapter ??, this volume; Baldi and Hornik, 1989; Bourlard
and Kamp, 1988). Sanger’s Generalized Hebbian Algorithm (Sanger, 1989a; Sanger, 1989b) allows
a group of linear units to learn a full principal components decomposition of the input distribution
by combining Hebbian learning with Gram-Schmidt orthogonalization. Finally, Foldiak (1990) has

described a related, but more biologically plausible algorithm that uses anti-Hebbian learning.

A principal components representation has several nice optimality properties. First, it can be

shown to minimize the mean squared error in optimal linear reconstruction of the inputs (for a

lie. the eigenvectors of the input correlation matrix.
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detailed analysis, see (Sanger, 1989c)). Second, Linsker (1988) has pointed out that under certain
conditions the principal component analyzing unit resulting from a Hebbian learning rule also trans-
mits maximal information about its inputs. Hence this approach to unsupervised learning is useful
if the main objective is to achieve maximal data compression, while retaining as much information
as possible about the data. On the other hand, even Linsker (1989) has questioned the relevancy of

accurate input reconstruction as a goal for biological perceptual systems.

1.3.3 How can we best model the input distribution?

Ideally we would like to be able to capture all the “interesting features” in the data. However, it is
unlikely that a single unsupervised learning method can do this in reasonable time for any arbitrary
input distribution, without making some a priori assumptions about the kinds of structure in the
environment. Each of the approaches we have mentioned can be expected to perform well on certain

distributions, and poorly on others.

Algorithms related to Principal Components Analysis (PCA) learn a set of linear orthogonal
projections in the directions of principal variation in the input distribution, or a rotated subspace of
these directions. In some cases, the principal components decomposition may coincide with features
of interest in the input. Oja (1989) suggests that subspace methods are particularly useful for
representing and classifying patterns such as spectra and histograms. Linsker (1986a, 1986b, 1986¢)
shows how interesting feature detectors similar to those found in early visual cortex can develop
via a Hebbian learning mechanism in a linear network operating on spatially localized patches of
random inputs. Miller, Keller and Stryker (1989) have performed similar simulations with units
having binocular inputs and local lateral excitatory connections; using a Hebbian learning rule with

decay in this case leads to the formation of ocular dominance columns.

For arbitrary input distributions, there is no guarantee that a subspace method or PCA will

capture the interesting structure. PCA would be expected to represent poorly parameters which
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vary in a highly nonlinear manner, and may in fact, depending on the distribution, obscure clusters

in the data (i.e. if there are too many isotropically distributed clusters (Huber, 1985)).

In situations where PCA fails to find any interesting structure in the data, competitive learning
schemes may in some cases be advantageous, since they attempt to represent explicitly the locations
of clusters. Each cluster may implicitly come to represent conjunctions of interesting features, which
can be interpreted as describing prototypical class members. On the other hand, the effectiveness of
such learning schemes is likely to be very dependent on the number and distribution of clusters in
the data, hence, the architecture must be carefully chosen to suit the input distribution. Further,
most competitive learning algorithms based on a hard “winner-take-all” strategy are very sensitive

to the initial conditions (i.e. initial random weights), and the order of presentation of input patterns.

1.3.4 What kind of representation is best for later learning?

In designing unsupervised learning algorithms, in addition to the question of what type of represen-
tation best models the data, we must address a related question: what type of representation will

be most convenient as input for further learning?

PCA has the nice property of finding a set of uncorrelated projections. This will typically be
very helpful for a method such as back-propagation learning by steepest descent. One thing that
makes supervised back-propagation learning slow is that there may be interacting effects of different
weights on the error. Because of these interactions, convergence can be expected to be very slow,
even with simple local accelerating procedures such as momentum (Plaut, Nowlan and Hinton,
1986) or delta-bar-delta (which employs an adaptive learning rate for each weight based on gradient
information) (Jacobs, 1987). If, on the other hand, the input representation uses uncorrelated
components, then the Hessian of the error function is diagonal, so simple acceleration methods will
permit a considerable speedup, by scaling the learning rates appropriately along each weight axis

independently. Of course, this analysis ignores the non-linearities of a multi-layer back-propagation
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network, but it may still provide a useful heuristic for designing good input representations even in

the nonlinear case.

If later learning requires interpolating a smooth function from points in the input distribution,
then any reasonable set of radial basis functions will make a good set of interpolation points (Moody
and Darken, 1989; Renals and Rohwer, 1989; Poggio, 1989). However, in some situations there are
disadvantages to this type of representation. We may be collapsing information about underlying
features of the data within each cluster; we are thereby scattering essential information about the
continuity of individual features, and about combinations of these features, across many clusters.
Suppose, for example, that there is a weak correlation between the desired output and the first
component of the input vector. Since the correlation is weak, a large sample is required to distinguish
between the correlation and sampling error. To get a large sample it may be necessary to combine
data points that differ considerably on the values of other components. In a system that uses
narrowly-tuned radial basis functions, only a few of the training cases will activate each RBF, and
so the information about the weak correlation will be spread over many different RBF’s and it will
be hard to detect the correlation. RBF’s make it easier to detect correlations between the desired
output and very high order combinations of input values, but harder to detect some of the low order

correlations that are easily detected by systems that use a less local representation.

While clustering and PCA-related algorithms may be useful forms of preprocessing for achieving
data compression, noise reduction, and smoothing, we would like to take unsupervised learning
much further. Our major goal is to build self-organizing network modules which capture important
regularities of the environment in a simple form suitable for further perceptual processing. We would
like an unsupervised learning procedure to be applicable at successive layers, so that it can extract
and explicitly represent progressively higher order features. If at one stage the algorithm could
learn to explicitly represent continuous real-valued parameters such as relative depth, position and

orientation of features in an image, subsequent learning could then discover higher order relations
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between these features, representing, for example, the location of object boundaries.

2 Spatial Coherence as an Objective Function

An unprocessed pixel image of a natural scene contains a wealth of information, but this information
is in a complex form; a combination of intrinsic parameters such as depth, reflectance, and surface
orientation, as well as effects of noise and illumination, all contribute to the intensity of each pixel.
We would like an unsupervised processing stage to learn to encode this complex information in a
simpler form, by representing the underlying parameters of interest explicitly. In order to constrain
the kinds of regularities that our algorithm may discover, we propose that a good objective for
perceptual learning is to extract higher-order features that exhibit simple coherence across space.
In other words, we would like to represent the information in one spatially localized image region in

a way that makes it easy to predict the representation of information in neighboring patches.

Some unpublished results of Peter Brown suggest that a good way to implement this general
idea is to try to maximize the explicit mutual information between pairs of parameters extracted
from adjacent but non-overlapping parts of the input. We derive a family of algorithms based on
this principle, beginning with the simple case of binary parameters, and extending it to the case of

continuously varying parameters.

The mutual information between two variables, a and b, is given by

I(a;b) = H(a) + H(b) — H(a,b)

where H(a)=—<logp(a)> is the entropy of a, and H(a,b) = —<logp(a,b)> is the entropy of the

joint distribution of @ and b. The equation shows that the mutual information between two variables
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can only be high if their joint distribution has low entropy, while each variable has high individual
entropy. The latter requirement that each has high individual entropy is one advantage of mutual
information over measures like the mean squared error between a and b: two variables can have
minimal squared error simply by taking on constant, equal values, thus conveying no information.
By maximizing the mutual information between variables extracted by two modules, each module
is forced to convey a lot of information about some (spatially coherent) feature of its input. Figure

1 shows how this objective function can be used to train a multi-layer network.

2.1 Experiments with binary units

For the simple case of two binary probabilistic units, we can estimate the mutual information by
discrete sampling of their activity values over a large set of input cases. Similarly, we can obtain
an analytic expression for the derivative of their mutual information, as shown in Appendix A. The
final expression we use for the partial derivative of the mutual information between the outputs of

the ¢th and jth units with respect to the expected output of the ith unit on training case a, p;“, is:

0I(ys; ;) i Dij P
—=20 = —P%|log— — p;*log =L — p="log— 1
op0 By~ Patlor —pylog (1)

where P is the probability of training case a, p; =<y;> is the expected value of the ith unit’s
output averaged over the fluctuations for each training case and also over the whole ensemble of

cases (when y; is treated as a stochastic binary variable), p; =<(1 — y;)>, and p;; =<y;y;>, etc.

We can see from equation 1 that in order for the ith unit to perform gradient ascent in I(y;;y;),
it needs to accumulate two ensemble-averaged statistics: the expected value that it is on, p;, and
the expected value of the joint event that it is on and the jth unit is also on, p;;; from these two

values the other terms in the individual and joint distributions can be derived (see Appendix A).
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a ) maximize 1

e —r
0 1 1 0 1 0 0 0
0 0 1 1 0 1 0 0

Figure 1: a) Two units receive input from adjacent, non-overlapping parts of the image. The learning
algorithm adjusts the weights of each unit to mazimize the mutual information, over the ensemble of
training cases, between the states of the two units. b) In a multi-layer version of this architecture,
once the first layer of weights has been trained to extract some low order features, the next layer can
hierarchically combine these noisy estimates into more accurate feature estimates.

16



In our simulations we use a batch version of this algorithm: we make one sweep through the input
cases to accumulate these probabilities, and a second sweep to accumulate the gradients. One could,
however, implement an online version of the algorithm by accumulating time-averaged estimates of
these probabilities, and using these approximate statistics to compute the weight update on each

case.

We have found that this method works well for the task of discovering depth in an ensemble of
very simple, binary random-dot stereograms, such as those shown in the input layer in Figure la.
Each input vector consists of a one dimensional strip from the right image and the corresponding
strip from the left image. The right image is purely random and the left image is generated from it
by choosing, at random, a single global shift. So the input can be interpreted as an approximation
to a one-dimensional stereogram of a fronto-parallel surface at an integer depth. The only local
property that is invariant across space is the depth (i.e. the shift). Hence, if one unit looks at
one area of the two images, and another unit looks at another area, the only way they can provide
mutual information about each other’s outputs is by representing the depth. We can measure the
degree to which output units are tuned to depth by performing “simulated neuro-physiology”: we
present the network with a number of patterns at different depths, and observe how the activity
levels of units vary with depth. A useful performance measure, indicative of the extent to which
the outputs are shift-tuned, is the mutual information between each output unit’s activity and the

degree of shift.

We used two global shifts (one pixel rightwards or one pixel leftwards) operating on binary
image strips. Each pair of strips was divided into n by 2 patches with a gap of one pixel between
patches,? where the receptive field width n varied in different experiments. Each stochastic binary

unit used the logistic non-linearity o(s) = 1/(1 4+ e~*) to determine the probability of outputting

2With no gap between the receptive fields of two neighboring units, those units could simply learn the uninformative
correlations between the upper (lower) rightmost bit of the left unit’s field and the lower (upper) leftmost bit of the
right unit’s field, while ignoring the rest of their inputs.

17



a 1 as a function of its total weighted summed input s.® Units learned roughly by the method of
gradient ascent, with the modification that the step size for each weight was truncated to lie within
[—0.1,0.1]. We found that in practice the gradients tended to increase by many orders of magnitude
as the algorithm neared a solution, and this upper limit on the step size prevented the learning from

“blowing up” in this situation.

We performed a number of preliminary experiments with the algorithm, varying the architecture
and the training set size. With random patterns and a small training set there is a high probability
that units will learn some of the random structure in the data in addition to the shift; as the number

of training cases increases, sampling error decreases and units become more tuned to shift.

We can further increase the likelihood that shift will be learned, rather than random structure,
by increasing the number of receptive fields (and hence the input size), because shift is the only
feature common to the inputs of all units. When we extend the architecture shown in figure la
to multiple receptive fields (with one unit receiving input from each receptive field) each unit now
tries to maximize the sum of its pairwise mutual information with each of the other units. In this
case, an interesting effect occurs as the learning proceeds: once some pair or subset of units within
a layer has “caught on” to the shift feature, their mutual information gradients become very large,
and convergence accelerates. This provides stronger shift-tuned signals to the other units, so that

the effect rapidly spreads across the layer.

Since shift is a higher order feature of the input (i.e., it can be predicted from the products of
pairs of pixel intensities but not by any linear combination of the individual intensities), a network
with a single layer of weights cannot learn to become a perfect shift detector.* Hence, the problem

requires a multilayer (nonlinear) network, so that with each successive layer, units can combine

3Rather than running stochastic simulations of probabilistic binary units, we actually used a mean field approxi-
mation in which the output of each unit on a particular case « is taken to be its expected value o(s*). In practice this
yields equivalent behaviour, but is much faster since we can obtain good estimates of the various probability statistics
required for our learning algorithm in only one sweep through the training set.

4See Minsky and Papert(1969) for a thorough treatment of the issue of what can and cannot be learned by single
layer networks.
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the “votes” from several lower level feature detectors to make more robust predictions. Using a
hierarchical architecture as shown in figure 1b, the partially shift-tuned noisy features extracted by
the first layer from several patches of input can be combined by the second layer units, thereby
increasing the signal to noise ratio in the prediction of shift. At the top layer, every “output” unit
maximizes the sum of its mutual information with each of the others. In the middle layer, there
are m clusters of units, each cluster receiving input from a different receptive field, and each output

unit receiving input from a different set of clusters.

As mentioned above, the performance measure we use is the mutual information between the
output units’ activities and the shift, when shift is treated as a binary feature of the input pattern.
For a network with two output units and four 2-unit clusters in the middle layer each with 2 by 5
receptive fields, the learning converged after about 300 passes through a training set of 500 patterns,
and the output units learned to convey, on average (over 5 repetitions from different initial random
weights), about .03 bits of information about the shift. As we increased the number of receptive
fields, the ability of the network to learn shift increased dramatically. The most shift-tuned (and
largest) network we experimented with on random shift patterns had 5 output units, each receiving
input from two 2-unit clusters of units in the middle layer, and ten 2 by 4 receptive fields in the input
layer. For this network, the learning took about 500 passes to converge on a training set of 1000
random patterns. The output units conveyed on average about .23 bits of information about the
shift, and the most shift-tuned unit (over five runs from different initial random weights) conveyed
.46 bits of information about the shift. Note that the maximum possible information that could be

conveyed about a binary feature is 1 bit.

2.1.1 Using back-propagation to train the hidden layers

The multi-layer algorithm described above has the nice property that layers can be trained se-

quentially. Once the initial layer has partly learned the shift problem, subsequent layers can take
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advantage of this earlier learning and quickly become even more shift-tuned. However, there is no
guarantee that the shift patterns will be perfectly classified by the top layer, since units in lower
layers within a cluster may learn redundant features, which only apply to a subset of the input
patterns. Since we only maximized the mutual information between pairs of hidden units, there
was nothing to prevent many pairs from learning exactly the same feature. We can improve the
performance of the network by applying our objective function between units at the top layer only,
and using back-propagated gradients to train the middle layer. The back-propagated gradients send
a more global training signal to the hidden units, which is best optimized by having hidden units
differentiate to detect different features. In practice, as we shall see in the next section, a combina-
tion of the sequential, layer by layer, application of the same objective (as described in the previous
section) and “top-down” or back-propagation training of the hidden units, seems to result in optimal

performance.

Starting from random initial weights, the back-propagated gradients from the output units ini-
tially tend to be very small, in fact many orders of magnitude smaller than those near the solution.
This causes convergence problems if the step size is a fixed proportion 7 of the gradient. What
seems like a reasonable learning rate at the beginning will cause the learning to “blow up” near
the solution. A more sophisticated optimization method would employ an adaptive learning rate,
or better yet, a line search. For our early experiments using back-propagation, described in the
remainder this section, we used what could be viewed as a very crude approximation to an adaptive
learning rate, in which we empirically chose a very large value of 5 for the first 50 iterations, and
then fixed it at a much smaller value for the remainder of learning. (Additionally, as before, the step
size for each weight was truncated to lie within [—0.1,0.1].) We found that in practice this speeded

up convergence considerably.®

We can remove the possibility that units may learn any of the random input structure by creating

5In our subsequent experiments on real-valued units (described in a later section in this paper), we employed a
simple line search to accelerate convergence.
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a complete set of unambiguous binary patterns. Using 2 by 4 receptive fields, there are 2* = 16
possible left-shifted and 16 right-shifted patterns within a receptive field. We remove the 8 ambiguous
patterns®. We used two modules, and created 16 bit patterns by presenting each possible combination
of pairs of the 12 unambiguous 2 by 4 bit left-shifted patterns, and each combination of pairs of

right-shifted patterns, yielding a total training set of 288 16-bit patterns.

The hierarchical architecture shown in figure 1b was helpful in dealing with noise when we trained
layers sequentially, because the output units could compute a weighted average of information from
multiple receptive fields. However, when we are back-propagating derivatives to hidden units, we
can deal with this problem by simply adding more hidden units for each receptive field, because the
back-propagated signal from an output unit provides pressure for the hidden units to extract different
features. In our experiments on the unambiguous pattern set (and in the remaining experiments
reported in this paper), instead of the hierarchical architecture used earlier, we used a modular
architecture as shown in figure 2. Each 2 by 4 patch was used as input to a separate module that

contained a layer of hidden units and one “output” unit.

Since we had removed the random aspect of the input patterns, we found we could now get by
with a much smaller network having only two modules. When we trained our two module network
on this complete set of patterns (with back-propagation to the hidden layers), we usually got (at
least one of two) output units that were pure shift detectors within about 300 passes through the
training set. The mutual information between the two output units occasionally approached the
global maximum of 1 bit (corresponding also to 1 bit of information about the shift), although

usually the network found only locally maximum solutions, as shown in figure 3a.

6The ambiguous patterns have 1111, 0000, 1010 or 0101 in the top half. Note that the left- and right-shifted
versions of each of these (using shift with wrap-around within receptive fields) are indistinguishable. The use of
wrap-around within each receptive field makes this example differ slightly from a simple version of a stereo task.
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Figure 2: Two modules that receive input from adjacent receptive fields. Each module has one layer
of hidden units. The learning algorithm mazimizes the mutual information between the states of the
two output units, and the gradients are back-propagated to hidden units.

2.1.2 Improving the performance with bootstrapping

The learning is rather slow for two reasons. First, we are not specifying desired values for the
“output” units—we are only specifying that their pairwise mutual information should be high.
The derivative of this objective function w.r.t a weight depends on three other layers of adaptive
weights—one other layer in the same module and two layers in the adjacent module. So in this
respect the difficulty of learning resembles back-propagation through four layers of weights. Second,

with random starting weights, the initial gradient of the objective function is very small.

The performance of the algorithm, in terms of both convergence speed and quality of the final
solution, is greatly improved by using a “bootstrapping” method. We start by applying our objective
function between pairs of units within layers (as we did when in the hierarchical version) until these
units are somewhat tuned to the shift. Then the gradients of the mutual information between the

output units are much bigger and the objective function can be applied at that layer only and
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the derivatives back-propagated.”. More globally coherent information can now be provided to the

hidden units that failed to find any useful features in the bootstrapping phase.

We ran simulations with three versions of the algorithm, one with bootstrapping, one with back-
propagation, and one combined. We compared their performance on a network with two modules,
using 8 hidden units and one output unit per module, on the complete, unambiguous pattern set

described above. The three versions of the learning algorithm we used were:

Version 1. 50 bootstrapping learning iterations, in which each layer was trained to maximize
information between pairs of units between modules, followed by 250 iterations with informa-
tion maximization between the top two units and back-propagation of gradients to the hidden

units.

Version 2. 300 iterations in which each layer was trained to maximize information between
pairs of units in different modules in the same layer, without back-propagation (as in the

bootstrapping phase of Version 1).

Version 3. 300 iterations with information maximization between the top two units and

back-propagation to the hidden units (as in the back-propagation phase of Version 1).

Version 1 performed by far the best: in 48 out of 50 runs from different initial random weights, the
network learned an exact solution to the shift problem, in which one or both output units predicted
shift almost perfectly.® In Versions 2 and 3, while the top-level units nearly always became highly
shift-tuned, only in 27 out of 50 and 30 out of 50 repetitions, respectively, did the network learn
to perfectly separate the two classes of patterns. Figure 3 shows the learning curves for ten runs of
Version 1 (bootstrapping) versus Version 3. We can see that in some cases the mutual information

between the top two units asymptotically approaches the global optimum, while in other cases the

7One could alternatively apply both objectives simultaneously to the hidden units
8i.e. the mutual information between the unit’s output and shift was greater than or equal to 0.6 nats = about .86
bits. In the remaining two runs, the output units were still both highly shift-tuned, but did not meet this criterion.
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Figure 3: Mutual information between two modules versus learning epochs on 288 binary shift pat-
terns. a) shows learning curves using back-propagation alone, for 10 runs starting from different
initial random weights, and b) shows learning curves using back-propagation preceded by 50 “boot-
strapping” iterations, for 10 runs starting from the same initial weights as in a).

procedure has become stuck in sub-optimal regions of weight space.

It appears that the bootstrapping procedure increases the likelihood that the network will con-
verge to globally optimal solutions. The reason for this may be that because we are applying two
different learning procedures to the hidden units, they have more opportunities to discover useful
features at each stage. During the bootstrapping stage, a given pair of hidden units attempting to
achieve high mutual information cannot learn to predict shift perfectly, since the shift problem is not
learnable by a single layer of weights. However, some units do learn to be partially correlated with
shift at the bootstrapping stage. This makes the job of a pair of output units in adjacent modules
much easier, since they now have more spatially correlated inputs, which are at least partially shift-
tuned. Now when we back-propagate the information gradients to the hidden units, those hidden
units which failed to learn anything useful in the bootstrapping stage are under increased pressure

to become shift-tuned.

Not only does the bootstrapping procedure increase the overall quality of the solution, but on

more difficult learning problems it substantially reduces the learning time. We find that for the
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continuous version of our algorithm (described in the next section), on stereograms with continuously
varying depths, when the hidden units are initially trained with bootstrapping, the subsequent

learning with back-propagation of gradients is accelerated by roughly an order of magnitude.

3 Modules with real-valued outputs

The binary probabilistic output units we used in our initial experiments tend to learn solutions with
large weights, resulting in sharp decision boundaries. The drive toward maximal entropy causes a
unit to adopt its two possible states with equal probability over the ensemble of training cases, but
the drive toward minimal joint entropy causes it on each particular case to be either strongly on or
strongly off, so that it can agree with its neighbor with high probability. This “within-case” tendency
towards strongly binary behaviour of the output units has some undesirable consequences. As the
magnitudes of the weights increase, the unit’s sigmoidal probabilistic response function sharpens
into a step function. On each particular case, the unit’s response is at one of the extremes of this
function, where its slope is virtually zero. This means that effectively the unit can neither adapt
any further, nor can its output be used to indicate its degree of uncertainty about its decision, since

it has virtually become a linear threshold unit.

This binary behaviour makes it difficult to represent depth in more realistic images that contain
smoothly curved surfaces which have real-valued depths. In this case, we would like units to learn to
encode continuous ranges of depths with real values. Ideally, we would like a group of units to form
a population code for depth, in which each unit has a roughly Gaussian-response to some limited
range of disparities. Such a mechanism appears to be employed in biological systems (Lehky and
Sejnowski, 1990), and could be achieved, for example, using the continuous interval encoding scheme
proposed by Saund (1986). We are investigating the use of an alternative scheme in our current

research; for now, however, let us assume that it is possible for a single unit’s real-valued output to
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reliably encode depth, given that the input patterns have only a small range of disparities.

In the following simulations, we use random dot stereograms of curved surfaces, as shown in
figure 4, and modules with deterministic, real-valued outputs that learn to represent real-valued
depths (disparities) with sub-pixel accuracy. A slice of a curved surface is generated by randomly
choosing a collection of control points (scaled to lie within a fixed depth range), and fitting a curve
through these points using spline interpolation, as shown in figure 4. The curve can be thought of
as the depth of a gently curved surface as a function of the (horizontal) x-coordinate, for a fixed
y-coordinate. Points are pseudo-randomly scattered on the curve by dividing the x-axis into a fixed
number of intervals, and randomly placing a point within each interval, to create a pattern of random

features.

Stereo images are formed from this pattern by taking two parallel projections from slightly
different viewing angles.® Finally, we add Gaussian blur (using a Gaussian with standard deviation
roughly equal to one image pixel) to the stereo images and integrate these blurred patterns within
equally spaced intervals to create the discretized real-valued n-dimensional input vectors. The
Gaussian blurring causes a single point from the random dot pattern to spread over several pixels
in the final image. The final pair of n-pixel stereo patterns is treated as a 2 by n image, which is
divided into smaller stereo receptive fields. The spacing of the random features is chosen so that,
on average, each receptive field will contain about two features, and never less than 1 feature. (We

discuss the problem of missing or unreliable data in the final section.)

The analytic expression for the mutual information between two real-valued variables a and b is
I(a;b) = —[[logp(a) + [logp(b) — [ [logp(a,b)]. To extend our algorithm to real-valued units,
we must make some simplifying assumptions about the probability distributions of the variables,
in order to obtain a tractable approximation to this expression. We start by making the following

very simple coherence assumption (which will be relaxed later): There is some locally detectable

9The parameters of the projection (focal length, eye offset and image width) were chosen so that the maximum
disparity was 6 minutes of visual arc in the “imaging system”, corresponding to a final disparity of 2 image pixels.
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Figure 4: Part of a cubic spline fitted through seven randomly chosen control points, with randomly
located features scattered on it, and the “intensity” values in the two images of the surface strip. The
images are made by taking two slightly different parallel projections of the feature points, filtering
the projections through a Gaussian, and sampling the filtered projections at equally spaced sample
points. The sample values in corresponding patches of the two images are used as the inputs to a
module. The boundaries of two neighboring patches are shown on the spline.

parameter which is approximately constant for nearby patches. So, given two modules A and B
that receive input from neighboring patches, we want their outputs a and b to be approximately
equal. We can think of b as a signal that we are trying to predict and a as a version of that signal
that is corrupted by additive, independent, Gaussian noise. If we assume that both a and b have
Gaussian distributions, the information that a provides about b is determined by the log ratio of

two variances:

V(signal + noise)
V (noise)

I, =0.510g

The reader who is familiar with information theory will recognize that the above is a standard
expression for the information transmission rate of a noisy channel when the signal and noise have

Gaussian distributions (Shannon, 1949).

In our model, where a is a noisy estimator of b, the information rate is:

V(a)

I, = log Via—b)

So, for a to provide a lot of information about b we need a to have high variance but a — b to
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have low variance. For symmetry, we actually optimize the following objective function (where « is

a small constant which prevents the information measure from becoming infinitely large):

V()

I3y = lagp + Ipja = log Vie—b)+r

a;

V(a)
Vie—b)+k +log

In the above model, modules A and B are actually making inconsistent assumptions about each
other’s output distributions (Ralph Linsker, personal communication). Theoretically, I,., should be
equal to Ip,,. However, each module is assuming that it is conveying a noisy version of some signal,
and that the other is conveying the pure signal. Under these assumptions, A would predict its own
output to have higher variance than b, while B would predict its own output to have higher variance
than a. Thus, the assumptions cannot both be valid except in the limit as the variance of a — b
approaches zero. However, in practice this is not a problem, because each module is minimizing

V(a — b), so our model becomes more accurate as learning proceeds.

To avoid the asymmetry in our mutual information measure, another possibility would be to
assume that both a and b are noisy versions of the same underlying signal, each with independent
additive Gaussian noise. This alternative model has the advantage that modules A and B are
now making consistent assumptions about each other, but the disadvantage that we cannot exactly
compute the information that either of the modules alone transmits about the underlying signal. As

an approximation, we could optimize the expression

o Via+b) o V(signal + noise, + signal + noisep)
& Vie—b) & V(noise, — noisey)

V(2 * signal + noise, + noisep)

= 1
8 V(noise, + noisey)

as suggested by Allan Jepson (personal communication). This measure tells how much information

the sum a + b conveys about the signal. In our simulations, we use the former model, with the above
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expression for I* and we find that it gives good results in practice.

The derivation for the gradient of our objective function I* is given in Appendix B. The final
expression we use in our learning algorithm for the partial derivative of I*(y;; y;), the mutual infor-
mation between the outputs of the ¢th and jth units with respect to the output of the ith unit on

case a, ¥;%, is:

OI"(ysy;) _ 2 [9"—<wi> " —9%)~<yi—y; > @)
Ay N1 V() V(g —y;) + 1

where < y; > is the output of the ¢th unit averaged over the ensemble of NV training cases.

The objective we have proposed for the continuous case is closely related to a statistical method
called ACE(Hastie and Tibshirani, 1990) (for Alternating Conditional Expectation), a nonlinear
generalization of regression. ACE minimizes the squared error between a single nonlinearly trans-
formed predictor variable y and an additive nonlinear transformation of a set of m observed variables

x;, over an ensemble of n observations:

n m

E= Z(f(yi) - Z¢($ij))2

i=1 j=1

subject to the constraint that f(y) has unit variance. While ACE’s underlying model differs from
ours (we compute nonlinear transformations of two sets of variables - the two input patches, and
we do not use an additive model, since the input components are not in general independent),
both objectives are equivalent to maximizing the correlation between two nonlinearly transformed

variables.
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3.1 Discovering real-valued depth for fronto-parallel surfaces

Figure 4 shows how we generate stereo images of curved surface strips. The same technique can
be applied to generate images of fronto-parallel planar surfaces. Using 1000 training cases of this
simpler type of input, we trained a network that contained 10 modules each of which tried to
maximize I* with the immediately adjacent modules. Each module had a single linear output unit,

and 10 nonlinear hidden units.

Each update of the weights involves two complete passes through the training set. In the first
pass, we compute the mean and variance of each output value and the mean and variance of each
pairwise difference between output values given the current weights (see in Appendix B). In the
second pass we compute the derivatives of I* (w.r.t. each unit’s output) as shown in equation 2
for the output units of each pair of adjacent modules. We then back-propagate these terms to the
hidden layer, and for each unit, we use these derivatives to accumulate dI*/dw for all weights. Then
we update all the weights in parallel. After each weight update, we average corresponding weights
in all the modules in order to enforce the constraint that every module computes exactly the same
function of its input vector. (This idea of constraining the weights has been used effectively by le

Cun et al. (1989) in a supervised learning task).

Without these equality constraints among groups of weights, the algorithm does not converge;
each module tries to learn some of the random structure that it finds in common with the adjacent
neighbor, and this effect “swamps out” the effect of disparity. This is because it is much easier for
two units to learn correlations between pairs of their input lines than it is to learn higher order
structure that would eventually lead to more globally optimal solutions. When we average weight
updates among groups of units receiving input from different input patches, the effect of this low
order noise is reduced, since only the disparity is common to all input patches. (Note that we
dealt with this problem differently in the binary case, by allowing each unit to maximize mutual

information with many other units rather than just its immediate neighbors.)
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Figure 5: The activity of the linear output unit of a module (vertical azis) as a function of the
disparity (horizontal axis) for all 1000 test cases using planar surface strips. a) shows the response
for a network trained with 10 adaptive nonlinear hidden units per module, and b) for a network
trained with 100 nonadaptive Gaussian units per module.

To accelerate the convergence, we used a simple line search. Each learning iteration consists of two
phases: 1) computation of the gradient, as described above, and 2) computation of an appropriate
learning rate 1. At the beginning of each iteration, 7 is increased by a factor of 1.05. In phase 2,
we first increment the weights by a proportion 7 of the gradient, and then if the average amount of
mutual information between adjacent output units has decreased, we repeatedly backtrack, halving

1 each time, until the average information is greater than or equal to its previous value.

Before applying this learning algorithm, we first trained the hidden layer only, with 100 boot-
strapping learning iterations, maximizing I* between pairs of hidden units in adjacent modules.!?
We then trained the 10 modules, as described above, for 1400 iterations. Each module became

highly tuned to disparity, as shown in figure 5a.

10 A5 in the binary case, we do not want two hidden units within the same module to directly or indirectly optimize
their mutual information (for they could learn trivial solutions). They could do so indirectly by each optimizing their
mutual information with the same unit in another module. Hence we arbitrarily number the n units within the hidden
layer of each module, and only allow hidden units in different modules to communicate with each other if they have
been given the same number.
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3.2 Speeding the learning using radial basis functions

We experimented with an additional method to accelerate learning, in which the first hidden layer of
adaptive units in each module is replaced by a large number of non-adaptive radial basis functions
(RBFs) (Moody and Darken, 1989). Each radial basis unit has a “center” X, that is equal to a
typical input vector selected at random, and gives an output y, which is a Gaussian function of the

distance between the current input vector and the unit’s “center”:

1 [IX-X||
e o2

v= 2mo

All the Gaussians have the same variance o2, which is chosen by hand.!! Each module had 8 by 2
input units connected to a layer of 100 non-adaptive RBFs. Every module used exactly the same

set of RBF's so that we could constrain all the modules to compute the same function.

We compared the performance of the learning with a non-adaptive hidden layer of RBFs, versus
the algorithm described in the previous subsection with an adaptive layer of nonlinear hidden units,
on the fronto-parallel surfaces. We found that with the RBFs, the learning took only about 50
iterations to converge, a speedup of roughly an order of magnitude. However, there is some loss of
precision in the solution; units still became highly depth-tuned, but had greater variance, as shown

in figure 5b.

In the remaining experiments described in this paper for discovering depth in stereo pairs of
curved surface strips, we used an initial layer of RBFs, choosing to sacrifice some precision for

increased learning speed.

11The variance was 0.1. The input vectors had peak values of about 0.3.
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3.3 More complex types of coherence

So far, we have described a very simple model of coherence in which an underlying parameter at
one location is assumed to be approximately equal to the parameter at a neighboring location.
This model is fine for fronto-parallel surfaces but it is far from the best model of slanted or curved
surfaces. Fortunately, we can use a far more general model of coherence in which the parameter at
one location is assumed to be an unknown linear function of the parameters at nearby locations.

The particular linear function that is appropriate can be learned by the network.

We used a network of the type shown in figure 6a (but with 10 modules and with a contextual
predictor unit for all modules except the two at the ends). We tried to maximize I* between the
output of each module and the contextual prediction of this output that was produced by computing
a linear function of the outputs of one adjacent module on each side. We used weight averaging to
constrain this interpolating function to be identical for all modules. We also back-propagated the
error derivatives through the interpolating weights. Before applying this new objective function, we
first used a bootstrapping stage in which we maximized I* between adjacent pairs of modules as

before, for 30 learning iterations.

After having been trained for 100 iterations on 3000 patterns, the two weights learned for the
interpolating function were .55,.54. The output of these units is similar to the response profile
of units trained on fronto-parallel surfaces, shown in figure 5b, but even more finely depth-tuned.
Thus, the interpolating units have learned that the depth at one patch on a planar surface can be

approximated by the average of the depths of surrounding patches.
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Figure 6: Networks in which the goal of the learning is to mazimize the information between the
output of a local module and the contertually predicted output that is computed by using a linear

function of the outputs of nearby modules. a) The network used for planar surface interpolation. b)
The network used for curved surface interpolation.
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3.4 Discovering a surface interpolator for curved surfaces

As we introduce curvature in the surfaces, the prediction of depth from neighboring patches becomes
more difficult; at regions of high curvature, a simple average of the depths of 2 adjacent patches will
under- or over-estimate the true depth. In this case, a better interpolator would base its predictions

on more than two local measurements of depth, thereby taking curvature into account.

We trained a network of 10 modules on 1000 of the stereograms of curved surface strips, using
the same architecture and objective function as for the planar surface task, for 30 iterations. We
then added an interpolating layer; this time, however, the contextual prediction of a given module
was a linear function of the outputs of two adjacent modules on either side, as shown in figure 6b.
After 100 iterations, the four weights learned for the interpolating function were —.04, .64, .65, —.04.
Positive weights are given to inputs coming from the immediately adjacent modules, and smaller
negative weights are given to inputs coming from the other two neighbors. The activity of these
units is well tuned to disparity, as shown in figure 7. Given noise-free depth values, the optimal
linear interpolator for the surface strips we used is approximately —.2,.7,.7,—.2. But with noisy
depth estimates it is better to use an interpolator more like the one the network learned because the

noise amplification is determined by the sum of the squares of the weights.

4 Discussion

The goal of our depth interpolating unit was to discover how to predict one value from a linear
combination of nearby values, by maximizing the log ratio of its output variance to the variance of
the prediction error. Another way to pose this problem is to find an invariant relation between the
predicted value and the other values by learning a linear combination of all the values, such that

the combined value always equals zero (Richard Durbin, personal communication). In this case,
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Figure 7: The output of a unit (vertical axis) as a function of the local disparity (horizontal axis) for
a test set of 1000 patterns, when trained on 1000 curved surface strips. The unit learned to predict
the depth locally extracted from one module as o linear function of the outputs of the two adjacent
modules on either side.

we would minimize the variance of the predicting unit’s output about zero, while maximizing the
variances of the individual inputs. This amounts to discovering invariant higher-order properties
by learning invariance detectors that have low variance even though their input lines have high
variances and large weights. One attractive aspect of this view is that the actual output of an
invariance detector would represent the extent to which the current input violates the network’s
model of the regularities in the world. This is an efficient way of transmitting information about the
current input. Furthermore, it has been suggested that the computation of invariant features about

the world plays a fundamental role in human pattern recognition (Dodwell, 1983).

An invariance detector that minimizes the ratio of its output variance divided by the variance
that would be expected if the input lines were independent Gaussian variables is a real-valued, deter-
ministic, approximate version of the G-Maximization learning procedure (Pearlmutter and Hinton,
1986) which finds regularities by maximizing the extent to which the independence assumption is
incorrect in predicting the output of a unit. It also has an interesting relation to Linsker’s learning

procedure (Linsker, 1988). Linsker assumes the variances and covariances of the activities on the
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input lines to a unit are fixed (because he does not backpropagate derivatives) and he shows that,
with the appropriate Gaussian assumptions, the information conveyed by the unit about its input
vector is maximized by using weights which mazimize the ratio of the output variance divided by

the sum of the squares of the weights.

4.1 Learning multidimensional features

We have described the learning procedure for modules which each have a single real-valued output.
For modules with several real-valued outputs, the natural way to generalize the objective function
is to use the information rate for multi-dimensional Gaussians, where the variance is replaced by
the determinant of the covariance matrix (Shannon, 1949). Zemel and Hinton (1991) have applied
a version of this algorithm to explicitly extract information about the parameters of the viewing

transform in images of simple two-dimensional objects.

4.2 Modeling discontinuities

We have also ignored the ubiquitous problem of discontinuities. Images of real scenes have strong
local coherence punctuated by discontinuities. We do not want our learning procedure to smear
out the strong local coherence by trying to convey information across the discontinuities. We would
prefer a module to make accurate predictions in continuity cases and no predictions in other cases

rather than making rather inaccurate predictions in all cases.

We can achieve this by allowing a module A to use a slightly more complicated model to predict b,
the depth of a nearby patch (or a linear combination of several nearby depths). Instead of assuming
that the predicted signal b is always drawn from a Gaussian distributed identically to its own output

a (plus noise), module A models b’s distribution as a mixture of two Gaussians, as shown in figure 8.
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Figure 8: The probability distribution of b, p(b), is modeled as a mizture of two Gaussians: N1(b)
with mean = a* and small variance, and Na(b) with large variance. Sample points for a and b, a*

and b* are shown. In this case, a* and b* are far apart so b* is more likely to have been drawn from
Ns.

For each input pattern, A assumes that b was either drawn from a normal distribution Ny (b, p1,012)

2

with mean gy = a and small variance 012 (a continuity case) or from another less predictable

distribution Ny (b, 2, 02?) with much greater variance (a discontinuity case).

The posterior probability that the current case « is a continuity example can be computed by
comparing the probability densities, under both the continuity and discontinuity distributions, of
the observed output of module B, as is done in the EM algorithm!2?(Dempster, Laird and Rubin,

1977):

N- 2
(%) = T N1(b, p1,01%)

3
212':1 WiNi(b7Mi70i2) ( )

12EM is an iterative optimization procedure which can be used to find a (locally) maximum likelihood model using
a finite mixture of arbitrary component densities for a set of incomplete data points.
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where 7;’s are the mixing proportions. The proportions can be fixed, or can be estimated from the
data as in the EM algorithm, e.g. 71 = > ._, p1®/n. We can now optimize the average information a
transmits about b, by optimizing the product of the mixing proportion m; of the continuity Gaussian

and the information conveyed given that we have a continuity case:

I"™ = —m[<log p(a)> + <log p1(b) > — <logpi(a,b)>]

The contribution to the accumulated gradient is thus made proportional to the probability that
the current case is a continuity example. This means that clear cases of discontinuity do not affect

the weights learned by the continuity model.

One way to implement this idea is with an iterative two-phase learning procedure, in which we
first adjust the weights while freezing the mixture model parameters, and then freeze the weights
while optimizing the mixture model. After each sweep through the training data, we could use
a gradient method to update the weights in the network, and then use several iterations of EM
to reestimate the variances and mixing proportions of the continuity and discontinuity Gaussians.
This only approximately follows the gradient of the above objective function, since the implicit
assumption is made that the weights and model parameters are independent. In practice, there are
difficulties in getting this method to converge, probably due to the invalidity of the independence

assumption.

A better approach would be to have a means of estimating the mixture model parameters which
is independent of the weights in the stereo network. For example, an additional “expert network”
could estimate the likelihood that each input pattern represents a continuity or discontinuity case,

as in the competing experts model of Jacobs et al.(1991).
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4.3 Population codes for depth

An alternative way to model discontinuities falls out naturally if we use a population code (as
discussed at the beginning of section 2) to represent depth, rather than using the activity of each
output unit to encode the entire range of disparities. If each member of a group of units is tuned to a
slightly different disparity, with a roughly Gaussian response, and each receives input from roughly
the same region, we can interpret the response of each unit in this population (when normalized
by the total population response) as the likelihood that it detected its preferred disparity. This
population code can also be viewed as a mixture of Gaussians model for depth within a local image
region. When one unit is most strongly active, its preferred disparity is, with high probability, close
to the true disparity. If there are two sharp peaks in the population’s depth response, this is strong
evidence of a depth discontinuity within the region (assuming that we do not have two transparent

surfaces).

Another problem we have not dealt with is that of missing or noisy data. When we are interpreting
the activity of a unit directly as a real-valued code for depth, there is no obvious way to represent
the certainty of the local estimate. The population code handles this problem in a natural way.
When the local data is missing or very ambiguous, the population will have uniform low activity

over all units. Thus, the entropy of the activity distribution represents uncertainty.

A simple way to ensure that the population encodes a probability distribution is to make the

expected output of each unit be:
esi/T
pi = E] eS]' /T
where s; is the total input to the ith unit in the population. This also allows an additional way of
explicitly modeling uncertainty by using a critic to compute an appropriate value of 7'. For example,

when the relative phase of two bandpass filtered images is used to extract disparity, there are some

easily detectable situations in which the disparity estimate is unreliable (Allan Jepson, personal
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communication, 1989). A critic could detect these situations and set T' to a high value. In principle,
the critic’s weights could also be learned by back-propagation. It remains to be seen whether this

works in practice.

4.4 Discovering other kinds of coherence

In this chapter, we have described a learning procedure for discovering coherence across space in
visual images, and demonstrated its effectiveness in learning about depth from stereo images. There
are many other spatially coherent features which could be learned, such as illumination, texture,
orientation and curvature. There is also coherence within and between signals acquired in other

sensory modalities, such as the correspondence between tactile and visual information.

Finally, in virtually every sensory modality, there is coherence across time. In the visual domain,
for example, in sequences of images at successive points in time, there is temporal coherence in
features such as the size and shape of moving objects. To train a network to learn temporal coher-
ence, we could apply essentially the same learning procedure as before, by maximizing the mutual

information between a network’s outputs at successive time frames.

5 Conclusions

We have described the broad goals of unsupervised learning as twofold: firstly, we would like it to
capture as much as possible of the interesting structure in the sensory input; secondly, we wish to
represent that structure in a form which facilitates subsequent supervised learning. In particular,
we would like the unsupervised learning to discover a transformation of the sensory input into an
explicit representation of the underlying causes of the sensory input. The visual system, for example,

transforms the patterns of light impinging on the retina into important features of the world such
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as object boundaries, motion and depth.

With relatively few constraints, simple statistical methods such as clustering and principal com-
ponents analysis can be applied to images to reduce noise, and represent simple low order features.
As we further constrain the learning, we can discover more specific, higher order features and form

explicit representations of important parameters of the world.

One way to constrain the learning is to find features that are spatially predictive, allowing
a network to discover spatially coherent properties of visual images, such as depth, texture and
curvature. The procedure we have described has several appealing properties. First, it builds into
the objective function (and the architecture) a type of prior knowledge that is strongly constraining
but widely applicable to perceptual tasks. Second, using the bootstrapping approach it may be
possible to train deep networks fairly rapidly, provided the domain is such that higher order features
that exhibit long-range coherence can be built out of lower order features that exhibit shorter range
coherence. We have illustrated this idea by first training a network to discover depth in small patches
of stereo images, and then training depth-interpolating units which combine depth estimates from

several local patches.
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Appendix A

The Mutual Information Gradient in the Binary Case

We assume a simple model neuron which computes a nonlinear probabilistic function ¢ of its real-
valued total input s;. For a particular input case «, the output of the ¢th unit is a binary variable
y; € {0,1}, which is on with probability p;* = o(s;*) and off with probability 1 — p;*. The total

input to a unit is computed as a weighted sum of the activities on its input lines: s;* =3, wapyr®.

We can compute the probability that the ¢th unit is on or off by averaging over the input sample

distribution, with P® being the prior probability of an input case a:

pi = Y Pp”
(e}

o= 1-m

Similarly, for a pair of binary units in a feed-forward network which are not connected to one
another (but may share the same inputs), and hence compute independent functions on a particular
case, we can compute the four possible values in the joint (discrete) probability distribution of their

outputs, y; and y;, as follows:

Py = ) Ppitp®
a
by = Pj—Diy
b5 = DPi—Dij
p; = 1=pj—pit+p

The partial derivatives of the (expected) individual and joint probabilities with respect to the
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expected output of the ¢th unit on case «a are:

Op; - po
Opi©
Ips - _pe
Op
apij

— pap.©
Op;:™ Pi
op;;

J _ a, o
i —PP
Op;

ol = PA1-pY)
Ip—
aﬁz = —P*(1-p;*)
(3

The amount of information transmitted by the ith unit on case o when it is on is:

I(y* = 1) = —logp:®

If the log is base 2, the units of information are bits; for the natural log, the units are nats.
From here on, we use [og to denote the natural log. When the value of y;* is unknown, the average

information (or equivalently the entropy or uncertainty) in y;* is:

H(y®) = —[p:® log p® + p;* log p;°|

Averaged over all input cases, the entropy of y; is:

H(y;) = —(log p(y:)) = —[pilog p; + p;log p;]
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The mutual information between the outputs of the sth and jth units, y; and y;, is:

I(yi;y;) = H(y:) + H(y;) — H(y:,9;)

where H(y;,y;) is entropy of the joint distribution p(y;,y;):

H(yi,y;) = —({logp(yi,y;))

= —[piylogpi; +p5logp;; + py; log py; + pizlog ]

The partial derivative of I(y;;y;) with respect to the expected output of unit ¢ on case o, p;*,

can now be computed; since H(y;) does not depend on p;*, we need only differentiate H(y;) and

H(yi,y;)-

O0H (y; 0
6p(»y0;) = —8p'a[—(pi10gpi+17;10g1ﬁ)]
A 7
Op; i Op; op; P; O
- _ P — =+ lo += :
R LA S e Pzapi“]
Ap; Ip;
[a oL(og,‘ +1) + 8pia(0gp;+ )]
= —[P*(logp; + 1) — P*(log p; +1)]
= —Pa log&
i
OH (y;, v, 9
% - 8p.a[_(Pij10gpw+p logp;; + py; log py; + pi7log py;)]
A (]
Opsj bij 01r Pij —61%
log pi; + ij T
op;™ &Pij Dij ap Opi® gpb p;j Opi®

p; Op; | Org L g Oz

é’pz opie ol pgapi“

op;7
J _
+8pz-°‘ logpij +
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Opi; op;;
-3 Loz + 1

logpi; +1) +
apz_ ( gplj ) apl

D5
e (logpﬁ +1)+

piz

I J
op;©

(log 7 + 1)]
- _ [P“pj“(logpij +1) — P*p;*(log p;; + 1)
+P*(1 - p;*)(logp5 + 1) — P*(1 — p;*)(log p5 + 1)

= —P%p;%log % +pj—.°‘ log pii
17 17

0I(ys;y5) _ OH (y:) _ OH (yi, y;)
Op;© Op;™ Op:™
= —-P¢ log& —pjo‘log@ —pj—.o‘log%
v 7 vy
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Appendix B

The Mutual Information Gradient in the Continuous Case

In the real-valued case, we assume each unit deterministically computes its output y; according to
some (linear or nonlinear) function y; = o(s;) of its total input s;. The total input to a unit on case
a is computed as a weighted sum of the activities on its input lines: s;* = >, wizyr®. The goal
of the ith unit is to transmit as much information as possible about some underlying signal to be
extracted from its input. In the simplest model, unit ¢ assumes that its own output y; is equal to
the (Gaussian) signal plus some Gaussian noise, and that the jth output y; is exactly that signal.

Under this model, the mutual information between y; and y; is:

V(signal + noise)
visy; — 108 V (noise) o8

V(y:)
V(yi — )

For symmetry, we optimize the following approximation to the information rate:'?

V(y:)

* V(y;)
Lyisy; = Tyisys + Ly = log V(ys —y;)

V(yi —vj)

+ log

For unit ¢ to maximize the above information measure, it must store four statistics: its output
mean (y;) and variance V(y;), and the mean and variance of the difference of the units’ outputs,

(y; —y;) and V(y; — y;). These statistics are computed in an initial pass through the training set:

1N
Vi(y:) = N Z(yz’a)2 — (y:)?

13 Actually, we add a small constant & to the denominator terms V(y; — y;); this prevents the information measure
from growing infinitely large and stabilizes the convergence. Thus a minor change to the above derivation is required
when we add in this stabilizing term.
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Now we can compute the partial derivative of the information the ith unit conveys about the jth

unit with respect to the output of the ith unit on case a:

aI*yi;y]‘ _ V(y:) V(?Jj)
dye Oy tog V(yi — ;) + log V(yi—yj)]
_ OlogV(yi) 26logV(y,- - v;)
oy yg
_ L V(@) _ 2 V(yi—y)
V(y:) Oyf V(yi—y;) Oy
1,2 2 1 2. . . 2
= V(yi)(ﬁyi - N(yi)) -2 [W(N(yi —y;%) - N(yi—yj))
=2 (w =) — ) — (ws —w)]
N | V(y) V(yi —y;)
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