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Abstract

We have previously described an unsupervised learning procedure that discovers spatially
coherent properties of the world by maximizing the information that parameters extracted
from different parts of the sensory input convey about some common underlying cause. When
given random dot stereograms of curved surfaces, this procedure learns to extract surface
depth because that is the property that is coherent across space. It also learns how to
interpolate the depth at one location from the depths at nearby locations (Becker and Hinton,
1992b). In this paper, we propose two new models which handle surfaces with discontinuities.
The first model attempts to detect cases of discontinuities and reject them. The second model
develops a mixture of expert interpolators. It learns to detect the locations of discontinuities
and to invoke specialized, asymmetric interpolators that do not cross the discontinuities.

1 Introduction

Standard backpropagation is implausible as a model of perceptual learning because it requires an
external teacher to specify the desired output of the network. We have shown (Becker and Hinton,
1992b) how the external teacher can be replaced by internally derived teaching signals. These
signals are generated by using the assumption that different parts of the perceptual input have
common causes in the external world. Small modules that look at separate but related parts of
the perceptual input discover these common causes by striving to produce outputs that agree with
each other (see Figure 1a). The modules may look at different modalities (e.g. vision and touch),
or the same modality at different times (e.g. the consecutive 2-D views of a rotating 3-D object),
or even spatially adjacent parts of the same image.

In previous work, we showed that when our learning procedure is applied to adjacent patches
of images, it allows a neural network that has no prior knowledge of depth to discover stereo
disparity in random dot stereograms of curved surfaces. A more general version of the method
allows the network to discover the best way of interpolating the depth at one location from the
depths at nearby locations. We first summarize this earlier work, and then introduce two new
models which allow coherent predictions to be made in the presence of discontinuities. The first
assumes a model of the world in which patterns are drawn from two possible classes: one which
can be captured by a simple model of coherence, and one which is unpredictable. This allows
the network to reject cases containing discontinuities. The second method allows the network
to develop multiple models of coherence, by learning a mixture of depth interpolators for curved
surfaces with discontinuities. Rather than rejecting cases containing discontinuities, the network
develops a set of location-specific discontinuity detectors, and appropriate interpolators for each
class of discontinuities. An alternative way of learning the same representation for this problem,



using an unsupervised version of the competing experts algorithm described by Jacobs, Jordan,
Nowlan and Hinton (1991), is described in (Becker and Hinton, 1992a).

2 Learning spatially coherent features in images

Using a modular architecture as shown in Figure 1a), a network can learn to model a spatially
coherent surface, by extracting mutually predictable features from neighboring image patches.
The goal of the learning is to produce good agreement between the outputs of modules which
receive input from neighboring patches. The simplest way to get the outputs of two modules to
agree is to use the squared difference between the outputs as a cost function, and to adjust the
weights in each module so as to minimize this cost. Unfortunately, this usually causes each module
to produce the same constant output that is unaffected by the input to the module and therefore
conveys no information about it. We would like the outputs of two modules to agree closely (i.e.
to have a small expected squared difference) relative to how much they both vary as the input is
varied. When this happens, the two modules must be responding to something that is common
to their two inputs. In the special case when the outputs, d,, dp, of the two modules are scalars,
a good measure of agreement is:

V(da + db) (1)
V(dy — dp)

where V' is the variance over the training cases. Under the assumption that d, and d, are both
versions of the same underlying Gaussian signal that have been corrupted by independent Gaussian
noise, it can be shown that I is the mutual information (Shannon and Weaver, 1964) between the
underlying signal and the average of d, and d,. By maximizing I we force the two modules to
extract as pure a version as possible of the underlying common signal.

I =0.5log

2.1 The basic stereo net

We have shown how this principle can be applied to a multi-layer network that learns to extract
depth from random dot stereograms (Becker and Hinton, 1992b). Each network module received
input from a patch of a left image and a corresponding patch of a right image, as shown in Figure
la). Adjacent modules received input from adjacent stereo image patches, and learned to extract
depth by trying to maximize agreement between their outputs. The real-valued depth (relative to
the plane of fixation) of each patch of the surface gives rise to a disparity between features in the
left and right images; since that disparity is the only property that is coherent across each stereo
image, the output units of modules were able to learn to accurately detect relative depth.

2.2 The interpolating net

The basic stereo net uses a very simple model of coherence in which an underlying parameter at
one location is assumed to be approximately equal to the parameter at a neighboring location.
This model is fine for the depth of fronto-parallel surfaces but it is far from the best model of
slanted or curved surfaces. Fortunately, we can use a far more general model of coherence in which
the parameter at one location is assumed to be an unknown linear function of the parameters at
nearby locations. The particular linear function that is appropriate can be learned by the network.



We used a network of the type shown in Figure 1b). The depth computed locally by a module,
d., was compared with the depth predicted by a linear combination cfc of the outputs of nearby
modules, and the network tried to maximize the agreement between d. and d..

The contextual prediction, d., was produced by computing a weighted sum of the outputs of
two adjacent modules on either side. The interpolating weights used in this sum, and all other
weights in the network, were adjusted so as to maximize agreement between locally computed and
contextually predicted depths. To speed the learning, we first trained the lower layers of the net-
work as before, so that agreement was maximized between neighboring locally computed outputs.
This made it easier to learn good interpolating weights. When the network was trained on stere-
ograms of cubic surfaces, it learned interpolating weights of —0.147,0.675,0.656, —0.131 (Becker
and Hinton, 1992b). Given noise free estimates of local depth, the optimal linear interpolator for
a cubic surface is —0.167,0.667,0.667, —0.167.

3 Mixture models of coherence

The models described above were based on the assumption of a single type of coherence in images.
We assumed there was some parameter of the image which was either constant for nearby patches,
or varied smoothly across space. In natural scenes, these simple models of coherence may not
always hold. There may be widely varying amounts of curvature, from smooth surfaces, to highly
curved spherical or cylindrical objects. There may be coherent structure at several spatial scales;
for example, a rough surface like a brick wall is highly convoluted at a fine spatial scale, while at
a coarser scale it is planar. And at boundaries between objects, or between different parts of the
same object, there will be discontinuities in coherence. It would be better to have multiple models
of coherence, which could account for a wider range of surfaces. One way to handle multiple
models is to have a mixture of distributions (McLachlan and Basford, 1988). In this section, we
introduce a new way of employing mixture models to account for a greater variety of situations.
We extend the learning procedure described in the previous section based on these models.

3.1 Throwing out discontinuities

If the surface is continuous, the depth at one patch can be accurately predicted from the depths
of two patches on either side. If, however, the training data contains cases in which there are
depth discontinuities (see Figure 2) the interpolator will also try to model these cases and this will
contribute considerable noise to the interpolating weights and to the depth estimates. One way of
reducing this noise is to treat the discontinuity cases as outliers and to throw them out. Rather
than making a hard decision about whether a case is an outlier, we make a soft decision by using
a mixture model. For each training case, the network compares the locally extracted depth, d.,
with the depth predicted from the nearby context, d.. Tt assumes that d. — d. is drawn from a
zero-mean Gaussian if it is a continuity case and from a uniform distribution if it is a discontinuity
case, as shown in Figure 3. It can then estimate the probability of a continuity case:

7 Ndc_CimOa‘A/con dc_CZc
pcont(dc _dc) = (A = t(A )) (2)
N(dc - dCa 07 Vcont(dc - dc)) + kdiscont

where N is a gaussian, and kg;scons iS @ constant representing a uniform density.

LWe empirically select a good (fixed) value of kgjscont, and we choose a starting value of Veont(de — de) (some
proportion of the initial variance of d. — cic), and gradually shrink it during learning. The learning algorithm’s



We can now optimize the average information d. and (fc transmit about their common cause.
We assume that no information is transmitted in discontinuity cases, so the average information
depends on the probability of continuity and on the variance of d. + d. and d. — d. measured only
in the continuity cases:

~

‘/cont (dc + dc)
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! g ‘/cont (dc - dc)

(3)

where Pcont = <pcont(dc - dc)>

We tried several variations of this mixture approach. The network is quite good at rejecting
the discontinuity cases, but this leads to only a modest improvement in the performance of the
interpolator. In cases where there is a depth discontinuity between d, and d, or between dy; and
d. the interpolator works moderately well because the weights on d, or d. are small. Because
of the term P,,,; in equation 3 there is pressure to include these cases as continuity cases, so
they probably contribute noise to the interpolating weights. In the next section we show how to
avoid making a forced choice between rejecting these cases or treating them just like all the other
continuity cases.

3.2 Learning a mixture of interpolators

The presence of a depth discontinuity somewhere within a strip of five adjacent patches does not
necessarily destroy the predictability of depth across these patches. It may just restrict the range
over which a prediction can be made. So instead of throwing out cases that contain a discontinuity,
the network could try to develop a number of different, specialized models of spatial coherence
across several image patches. If, for example, there is a depth discontinuity between d,. and d. in
Figure 1 b), an extrapolator with weights of —1.0,42.0, 0,0 would be an appropriate predictor of
d.. The network could also try to detect the locations of discontinuities, and use this information
as the basis for deciding which model to apply on a given case. This information is useful not only
in making clean decisions about which coherence model to apply, but it also provides valuable cues
for interpreting the scene by indicating the locations of object boundaries in the image. Thus, we
can use the both the interpolated depth map, as well as the locations of depth discontinuities, in
subsequent stages of scene interpretation.

A network can learn to discover multiple coherence models using a set of competing inter-
polators. Each interpolator tries, as before, to achieve high agreement between its output and
the depth extracted locally by a module. Additionally, each interpolator tries to account for as

performance is fairly robust with respect to variations in the choice of kg;scont; the main effect of changing this
parameter is to sharpen or flatten the network’s probabilitstic decision function for labelling cases as continuous
or discontinuous (equation 2). The choice of Vcont(dc — (ic), on the other hand, turns out to affect the learning
algorithm more critically; if this variance is too small, many cases will be treated as discontinuous, and the network
may converge to very large weights which overfit only a small subset of the training cases. There is no problem,
however, if this variance is too large initially; in this case, all patterns are treated as continuous, and as the variance
is shrunk during learning, some discontinuous cases are eventually detected.



many cases as possible by maximizing the probability that its model holds. The objective function
maximized by the network is the sum over models, 1, of the agreement between the output of the
1th model, d;., and the predicted depth, d., weighted by the probability of the ith model:

(2 .
1= Y () log L \ie T ) @)
p Vi(die —d.)

where the V's represent variances given that the ith model holds. The probability that the
tth model is applicable on each case «, pf, can be computed independently of how well the
interpolators are doing;? this can be done by adding extra “controller” units to the network, as
shown in Figure 4, whose sole purpose is to compute the probability, p;, that each interpolator’s
model holds. The weights of both the controllers and the interpolating experts can be learned
simultaneously, so as to maximize I**. By assigning a controller to each expert interpolator,
each controller should learn to detect a discontinuity at a particular location (or the absence of
a discontinuity in the case of the interpolator for pure continuity cases). And each interpolating
unit should learn to capture the particular type of coherence that remains in the presence of a
discontinuity at a particular location.

The outputs of the controllers are normalized, so that they represent a probability distribution
over the interpolating experts’ models. We can think of these normalized outputs as the proba-
bility with which the system selects a particular expert. Each controller’s output is a normalized
exponential function of its squared total input, z;:

ez /T &(2i)?
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Squaring the total input makes it possible for each unit to detect a depth edge at a particular
location, independently of the direction of contrast change. We normalize the squared total input
in the exponential by an estimate of its variance, 6(z;)? = k> wj;2. (This estimate of the
variance of the total weighted input is exact if the unweighted individual inputs are independent,
Gaussian, and have equal variances of size k.) This discourages any one unit from trying to
model all of the cases simply by having huge weights. The controllers get to see all five local
depth estimates, d, ...d.. As before, each interpolating expert computes a linear function of four
contextually extracted depths, d;; = wiads + Wipdp + Wigdg + Wied,, in order to try to predict the
centrally extracted depth d..

We first trained the network using the original continuous model, as described in Section 2,
on a training set of 1000 images with discontinuities, until the lower layers of the network became
well tuned to depth. So the interpolators were initially pretrained using the continuity model,
and all the interpolators learned similar weights. We then froze the weights in the lower layers,
added a small amount of noise to the interpolators’ weights (uniform in [—0.1,0.1]), and applied
the mixture model to improve the interpolators and train the controller units. We ran the learning

2More precisely, this computed probability is conditionally independent of the interpolators’ performance on a
particular case, with independence being conditioned upon a fixed set of weights. As the reviewer has pointed out,
when the weights change over the course of learning, there is an interdependence between the probabilities and
interpolated quantities via the shared objective function.



procedure for ten runs, each run starting from different random initial weights and proceeding for
10 conjugate gradient learning iterations. The network learned similar solutions in each case.

A typical set of weights on one run is shown in Figure 5. The graph on the right in this
figure shows that four of the controller units are tuned to discontinuities at different locations.
The weights for the first interpolator (shown in the top left) are nearly symmetrical, and the
corresponding controller’s weights (shown immediately to the right) are very small; the graph on
the right shows that this controller (shown as a solid line plot) mainly responds in cases when
there is no discontinuity. The second interpolator (shown in the left column, second from the top)
predominantly uses the leftmost three depths; the corresponding controller for this interpolator
(immediately right of the top left interpolator’s weights) detects discontinuities between the right-
most two depths, d. and dg. Similarly, the remaining controllers detect discontinuities to the right
or left of d.; each controller’s corresponding interpolator uses the depths on the opposite side of
the discontinuity to predict d..

4 Discussion

We have described two ways of modelling spatially coherent features in images of scenes with
discontinuities. The first approach was to simply try to discriminate between patterns with and
without discontinuities, and throw away the former. In theory, this approach is promising, as
it provides a way of making the algorithm more robust against outlying data points. We then
applied the idea of multiple models of coherence to a set of interpolating units, again using images
of curved surfaces with discontinuities. The competing controllers in Figure 4 learned to explicitly
represent which regularity applies in a particular region. The output of the controllers was used
to compute a probability distribution over the various competing models of coherence.

The representation learned by this network has a number of advantages. We now have a
measure of the probability that there is a discontinuity which is independent of the prediction
error of the interpolator. So we can tell how much to trust each interpolator’s estimate on each
case. It should be possible to distinguish clear cases of discontinuities from cases which are simply
noisy, by the entropy of the controllers’ outputs. Furthermore, the controller outputs tell us not
only that a discontinuity is present, but exactly where it lies. This information is important for
segmenting scenes, and should be a useful representation for later stages of unsupervised learning.
Like the raw depth estimates, the location of depth edges should exhibit coherence across space,
at larger spatial scales. It should therefore be possible to apply the same algorithm recursively to
the the outputs of the controllers, to find object boundaries in two-dimensional stereo images.

The approach presented here should be applicable to other domains which contain a mixture
of alternative local regularities across space or time. For example, a rigid shape causes a linear
constraint between the locations of its parts in an image, so if there are many possible shapes,
there are many alternative local regularities (Zemel and Hinton, 1991).
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Figure 1: a) Two modules that receive input from corresponding parts of stereo images. The first
module receives input from stereo patch A, consisting of a horizontal strip from the left image
(striped) and a corresponding strip from the right image (hatched). The second module receives
input from an adjacent stereo patch B. The modules try to make their outputs, d, and dy, convey
as much information as possible about some underlying signal (i.e., the depth) which is common
to both patches. b) The architecture of the interpolating network, consisting of multiple copies of
modules like those in a) plus a layer of interpolating units. The network tries to mazimize the
information that the locally extracted parameter d. and the contertually predicted parameter d,
convey about some common underlying signal. We actually used 10 modules and the central 6
modules tried to mazimize agreement between their outputs and contextually predicted values. We
used weight averaging to constrain the interpolating function to be identical for all modules.




Random w

Spline

Curve

L b Ly
Image ‘I‘ 11 - \H| |‘|‘ \|‘ AL |‘ I|‘.‘II| ‘|‘.

Right
0L el
| L H Wl i Ll | I|. ‘l N

Figure 2: Top: A curved surface strip with o discontinuity created by fitting 2 cubic splines through
randomly chosen control points, 25 pizels apart, separated by a depth discontinuity. Feature points
are randomly scattered on each spline with an average of 0.22 features per pizel. Bottom: A
stereo pair of “intensity” images of the surface strip formed by taking two different projections of
the feature points, filtering them through a gaussian, and sampling the filtered projections at evenly
spaced sample points. The sample values in corresponding patches of the two images are used as the
inputs to a module. The depth of the surface for a particular image region is directly related to the
disparity between corresponding features in the left and right patch. Disparity ranges continuously
from —1 to +1 image pizels. Each stereo image was 120 pizels wide and divided into 10 receptive
fields 10 pizels wide and separated by 2 pixel gaps, as input for the networks shown in Figure
1. The receptive field of an interpolating unit spanned 58 image pizels, and discontinuities were
randomly located o minimum of 40 pizels apart, so only rarely would more than one discontinuity
lie within an interpolator’s receptive field.
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Figure 3: The probability distribution of d., P, ((ic), is modeled as a mizture of two distributions: a

Gaussian with mean = d} and small variance, and Py(d.), a uniform distribution. Sample points

for d, and d., (ij and d} are shown. In this case, d} and d} are far apart so UZ: s more likely to
have been drawn from Ps.
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Figure 4: An architecture for learning a mizrture model of curved surfaces with discontinuities,
consisting of a set of interpolators and discontinuity detectors. We actually used a larger modular
network and equality constraints between the weights of corresponding units in different modules,
with 6 copies of the architecture shown here. Each copy received input from different but overlap-
ping parts of the input.
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Figure 5: a) Typical weights learned by the five competing interpolators and corresponding five
discontinuity detectors. Positive weights are shown in white, and negative weights in black. b)The
mean probabilities computed by each discontinuity detector are plotted against the the distance from
the center of the units’ receptive field to the nearest discontinuity. The probabilistic outputs are
averaged over an ensemble of 1000 test cases. If the nearest discontinuity is beyond % thirty pixels,
it 18 outside the units’ receptive field and the case is therefore a continuity example.
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