In Network: Computation in Neural Systems, Volume 7, Number 1, February 1996

Mutual Information Maximization:
Models of Cortical Self-Organization

Suzanna Becker
Department of Psychology
McMaster University

Abstract

Unsupervised learning procedures based on Hebbian principles have been suc-
cessful at modelling low level feature extraction, but are insufficient for learning to
recognize higher order features and complex objects. In this paper we explore a class
of unsupervised learning algorithms called Imax [1] that are derived from information-
theoretic principles. The Imax algorithms are based on the idea of maximizing the
mutual information between the outputs of different network modules, and are capa-
ble of extracting higher order features from data. They are therefore well suited to
modelling intermediate to high level perceptual processing stages. We substantiate
this claim with some novel results for two signal classification problems, as well as by
reviewing some previously published results, and several related approaches. Finally,
Imax is evaluated with respect to computational costs and biological plausibility.

1 Introduction

One approach to unravelling the learning rules employed by the brain is to start with
neurophysiological data, and from there derive weight update equations. This “bottom-
up” approach allows one to incorporate considerable biological detail in modelling synaptic
level changes. For example, such an approach has led to refinements in Hebb’s learning
rule using recent evidence about conditions for LTP induction (e.g. [2]). However, in
order to model the development of large-scale neural networks, whose behavior is not
predictable from single neuron or synaptic-level events, we need an alternative approach.
One such alternative is to work from the top down, beginning with a computational goal
or cost function for the learning based on information processing constraints. This permits
networks to be understood in terms of their global behaviour. Such an understanding can
be elusive when one starts with a synaptic learning rule.

For example, the back-propagation learning procedure [3] minimizes the mean squared
error between the network’s output and the training signal. However, back-propagation



learning is not considered biologically plausible, because for each training pattern, each
output neuron must be provided with a target state. Further, error signals must be prop-
agated backwards along connections. In unsupervised learning, there is no training signal.
The problem in this case is to formulate an objective function for the learning that measures
how well the network has encoded the information available to its sensors, independently
of any direct external feedback to units. Once a cost function has been formulated, weight
update equations can be obtained by differentiating the cost with respect to the weights.
By performing gradient descent in a cost function we can thereby reduce a global algorithm
into synaptic-level steps (weight changes). Note, however, that the converse is not neces-
sarily true. That is, a given synaptic learning rule may not correspond to the derivative
of any global cost function. For example, for a single neuron, Hebb’s learning rule can be
shown to follow the derivative of the output variance [4], however, in a multi-layer feed-
forward network with fully interconnected layers, the variance of an output unit’s activity
depends on the weights to all units in the preceding layers. Thus, the Hebb rule can only
be said to maximize a local cost function. It tells us nothing about the behavior of an
entire network of units with Hebbian synapses.

Frequently, learning rules derived by differentiating global objective functions appear to
lack biological plausibility. They may require non-local communication of information, or
the computation of statistics averaged over an entire training pattern ensemble. This may
be why the “top-down” approach arouses skepticism in many neurophysiologists. However,
this approach may be viewed as a starting point for studying the computational processes
involved in learning. Once the learning equations have been derived, they can often be
refined into a more biologically plausible form, for example, using approximate statistics
computed online.

1.1 Information Transmission Models

Is there any evidence that the brain optimizes a cost function? And if so, what form does
that cost function take? Barlow [5, 6] hypothesized that early sensory processing serves to
transform the highly redundant sensory signal into a more efficient factorial code; that is,
the neurons’ outputs are statistically independent when conditioned on the input. What
cost function would cause a neural network to learn such a factorial code? A number of
investigators (e.g. [4, 7, 8, 9]) have used concepts from information theory [10] to try to
answer this question. The key idea in applying information theory to neural processing in
these models is that the neuron can be viewed as a communication channel. It receives
a signal along its input connections, and transmits an output signal. A cost function
for learning is then set up in terms of the rate of information transmission through the
channel, i.e., the mutual information (defined below) between the input and output signals,
as shown in Figure 1 a). With all of these models, there are additional assumptions about
the addition of noise at different points in the system. Atick and Redlich [7] proposed the



following redundancy measure, which when minimized, approximates Barlow’s optimality
principle:

Iy;s
C(y)

subject to the constraint of no information loss in the mapping from the input to the
output, where I, is the mutual information between a unit’s output y and the input
signal s, and C' is the channel capacity - the maximum achievable information that y may
transmit about s. Atick [11] provides an excellent review of this and related approaches,
as well as a good introduction to information theory. Here, we briefly review the definition
of Shannon’s mutual information measure [10], which will be used throughout this paper.
The mutual information between two signals, y4 and yg, is defined as follows:
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where H (z) stands for the entropy of the probability distribution p(x) of a random variable
x, and H(z,y) stands for the entropy of the joint distribution p(z,y) of random variables
x and y. H(z) is also referred to as the uncertainty in x. Shannon used this measure
to characterize the amount of information flowing through a communication channel, and
used the term information rate to refer to this quantity. To gain some insight into this
measure, it is useful to consider the conditions under which it is maximal and minimal.
A variable whose distribution has all its density concentrated in a very small region has
very low entropy. It can be predicted with high certainty, and therefore conveys very
little information. In contrast, the maximum entropy distribution is the uniform one®.
A variable following the maximum entropy distribution is completely unpredictable, and
conveys maximum information. The mutual information between two variables is highest
when the variables have high entropies individually, but their joint distribution has low
entropy. That is, each variable conveys a lot of information individually, but taken together
they are redundant.

The class of approaches depicted in Figure 1 a) have been very successful at modelling
the earliest stages of sensory processing, such as gain control in the blowfly compound eye
[12], receptive field properties of the mammalian retina [7], and the emergence of centre-
surround and oriented receptive fields in mammalian primary visual cortex [4]. Such cases
lend support to the view of Barlow and others that the nervous system is optimized for
transmitting information about the sensory input in an efficient, non-redundant manner.

Iprovided its density is confined to a finite volume [10]



Insert Figure 1 about here

Given the success of information-theoretic developmental models in accounting for early
stages of sensory processing, a question naturally arises: To what extent can they model
higher levels of processing? We now turn our discussion to a family of unsupervised learn-
ing algorithms called Imaz [1] and related approaches. These learning algorithms use
information-theoretic cost functions to discover higher-order features in sensory data. By
higher-order features, we mean here features which could not be computed by a single-
layer network, such as stereo disparity, or speaker-independent phoneme recognition. The
remainder of the paper is organized as follows: In section 2, we explain how the Imax cost
function encourages a network to discover higher-order features in multiple input streams.
We then show how this algorithm can be realized in a number of ways, depending on the
assumptions one makes about the probability distributions of the units’ outputs. In each
subsection, related learning algorithms in the literature are discussed. In section 3, we
conclude with a general discussion of the utility of Imax in modelling the development of
neural systems, in terms of computational complexity and biological plausibility, and we
discuss several more biologically plausible related algorithms.

2 Imax: maximizing mutual information between
outputs

The information available to our senses is highly redundant. Data compression, which
reduces redundancy, appears to be one of the major achievements of the earliest stages of
sensory processing. But can higher level perceptual abilities, such as visual object recogni-
tion and speech understanding, be modelled within an information-processing framework?
Clearly, we do much more with the sensory information than just map it into an efficient
code and store it away. The neural code must retain the information most useful to the or-
ganism, in a convenient form. At the same time, some of the sensory information, perhaps
even most of it, is thrown away. This points to a counter-intuitive aspect of information
theory as a basis for understanding neural representations: how is it that a completely
random, maximally unpredictable signal can be the most informative one?? One problem
with information theory is that it does not make any value judgements: that is, apart from
discounting that which is redundant, it does not tell us what information is most useful,
and what should be thrown away. Many other factors besides redundancy reduction may
have a bearing on what and how information is represented in neural systems. Further,

2In fact, information theory is more consistent with our intuitions if we think of it in terms of the
information gained by having observed a random signal at some point in time. After having observed a
particular value of the signal, we gain much more information if the signal is white noise than if we had
observed a more predictable signal.



different factors are likely to play a role in learning at different levels of the nervous system.
At the level of sensory transduction, the primary objective is to reduce dimensionality while
maximizing the information transmitted. At higher levels, factors such as prior knowledge
about the structure in the world may play a part in how the nervous system filters infor-
mation and shapes our perceptions. Prior knowledge could be incorporated in a number of
ways, such as in the pattern of connectivity, or in the learning mechanisms. It is unlikely
that very much specific knowledge is hard-wired into the cortex. On the other hand, neural
systems may be predisposed to learn particular kinds of structure that are characteristic
of sensory signals.

A ubiquitous feature of sensory data is coherence across time and across different sen-
sory channels. By “coherence” we simply mean that one part of the signal can be somehow
predicted from another part. The prediction may be based on an equality relation (e.g., the
signal is equal for spatially or temporally adjacent samples), a linear relation, or any higher
order relation. For example, in speech signals, individual words are typically composed of
long intervals having relatively constant spectral characteristics corresponding to vowels,
with short intervening bursts and rapid transitions corresponding to consonants. Even the
consonants change across time in very regular ways. This temporal coherence at various
scales makes speech predictable, to a certain degree. Similarly, visual, olfactory and tactile
sensations exhibit coherence across space and time. In the visual domain, adjacent parts of
the same object stimulate nearby photoreceptors in the retina. Nearby regions of the same
object are usually coherent with respect to many parameters, such as texture, orientation,
colour and depth; thus nearby photoreceptors tend to sample spatially coherent signals.
Since most objects in the visual world move slowly, if at all, the visual scene changes slowly
over time, exhibiting the same temporal coherence as other sensory sources. Further, there
is coherence across different sensory modalities. When one examines an object, both visual
and tactile cues can provide consistent information about features such as the object’s tex-
ture, orientation, and even the identity of the object. When one listens to a speaker, the
auditory signal may at times be unintelligible by itself, but visual cues such as the shape of
the speaker’s mouth can provide disambiguating information as to which word was spoken.
Thus, it seems that spatio-temporal and multi-sensory coherence provide important cues
for segmenting signals in space and time, and for object localization and identification.

In collaboration with Geoff Hinton, we derived a family of unsupervised learning algo-
rithms called Imax [1, 13] that try to discover higher-order statistics in sensory data by
taking advantage of spatio-temporal coherence. The central idea behind Imax is that two
different neural units or neural network modules should learn to extract features that are
coherent across their inputs, as shown in Figure 1 b). One way to get two modules to learn
to agree is to minimize the squared error between their outputs. However, the modules
could trivially minimize the error by always producing the same outputs for every input
pattern. So we need an objective function that measures not only how well the outputs
agree, but also whether they are detecting interesting features of their input. The cost



function we arrived at is Shannon’s mutual information measure.®> However, we applied
it in a way that is very different from the models depicted in Figure 1 a). Those models
manipulate the mutual information between the inputs and outputs of a network, or in
other words, the information transmission rate through a network. In contrast, the Imax
algorithms maximize the mutual information between the outputs of two (or more) differ-
ent network modules (see Figure 1 b). If there is any feature in common across the two
sources, that feature should be discovered, while features which are independent across the
two sources should be ignored.

From the definition in Equation 2, if two units’ outputs have a high degree of mutual
information, they must be individually unpredictable, but highly predictive of one another.
From the latter, it can be inferred that the units are conveying information about a common
source. In some situations, this is a very useful thing for neurons to do. However, in
one extreme case, they might actually be driven by a common set of inputs. In this case,
provided the shared inputs had high individual entropy, the goal of high mutual information
could be achieved trivially by putting a large connection weight on one of their common
input lines and all other weights equal to zero. Therefore, for this idea to work, the units
must be connected to separate input channels. For example, they could receive input
from spatially or temporally non-overlapping parts of the visual field, different frequency
channels in the auditory system, or two different sensory modalities.

To see how the two approaches depicted in Figure 1 would achieve very different results
on a concrete example, suppose the input is describable by four independent, equi-probable
features: colour, texture, hardness, and shape. Further, suppose there are two input
channels: a visual one sensitive to shape, texture and colour, and a tactile one sensitive
to shape, texture and hardness. Thus the two input channels share information regarding
only two properties, shape and texture. If each sensory pathway has two output units, then
maximizing the information transmission rate separately for each pathway should result
in each module’s outputs representing a random subset of two out of three of its input
features. Which particular input features each module learned to represent would depend
on the initial weights. In contrast, if we maximized the mutual information between the
two modules’ outputs, they should both discover shape and texture, and ignore colour
and hardness, because each of these properties is only received by one input channel.
Although the latter features would contribute to raising the summed individual entropies
of the two modules’ outputs, they would lower the joint entropy by an equal amount,
and therefore contribute nothing to the mutual information. This example illustrates how
our mutual information cost function is much more constraining than maximizing the

3The choice of this mutual information objective function was inspired by the work of Peter Brown,
Robert Mercer and colleagues on modelling the statistical regularities of text [14, 15]. They developed
an unsupervised word classifier, based on the assumption that a word can be predicted more accurately
from previous ones if the previous words can be grouped into equivalence classes based on their mutual
information with the current word.



information transmission rate through the network, because it selects features which agree
across multiple input channels.

One advantage of our mutual information measure for modelling learning in multiple in-
put streams is that it provides a means for information in one channel to modulate learning
in another channel, rather than simply merging the information in the two streams. Such a
scheme might be useful, for example, to allow an auditory representation of spoken words
to be kept in correspondence with a visual word form representation, and vice versa. Fur-
ther, Shannon’s information measure allows the comparison of two disparate information
sources, which may have very different representations and even different dimensionality.
This is in contrast to a measure such as the squared error between two representations,
which is minimized only when the two codes are identical in both scale and form. Thus,
sensory representations can be compared at a variety of levels in the system, and need not
be first mapped into a common representation.

We now look at a number of ways in which our mutual information objective function
can be instantiated in a family of learning algorithms called Imax. As can be seen in
equation 2, the computation of the mutual information between two variables requires
integration over their entire joint probability distributions. For continuous variables, in
the general case, this is obviously not a feasible computation for neurons to perform.
However, there are many special cases we can consider where the computation does become
feasible. We will consider three of these cases in the remainder of this section, in which
units’ outputs are modelled as discrete binary variables, discrete multi-valued variables,
and Gaussian variables respectively. Note that we do not need to make any assumptions
about the inputs to the network; they could be either real-valued or binary.

2.1 Binary signals

One assumption often made in neural network models is that units are binary and prob-
abilistic. Typically the sigmoid function (see Equation 3 below) is used to compute the
probability of a unit’s response, because it closely resembles the probability of a neuron
generating an action potential as a function of membrane depolarization. We can easily
estimate the mutual information between the outputs of two binary probabilistic units, by
sampling their mean outputs and correlations over a large set of input cases. Once we have
estimated the probabilities of each unit being on and the pair being on together, we can
directly compute their mutual information. More importantly, we can then compute the
derivative of their mutual information with respect to these probabilities, and with respect
to the weights, to obtain weight update rules.

In the binary model considered here, each output unit computes a nonlinear probabilis-
tic function of its real-valued total input z; = Y, w;ry, using the sigmoidal nonlinearity:

fo) = T g
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For a particular input case «, the output of the ith unit in module A represents a binary
variable y,;, which is on with probability p%; = f(2%;), and off with probability pS- =
1 — f(x%,). However, rather than using stochastic output units and sampling each y;
many times per input pattern to estimate the p;s, we can simulate the learning much more
efficiently by using the exact values of the p;s as the outputs.

The mutual information between two binary variables, y4;, and yg;, can be computed
as follows:

Iysws; = — DPailogpai — pglogpz; — pejlogps; — pgjlogpg; (4)
+ Dai,Bj 108 PaiB; + Daip;l08Pm B; + PaiB7l08P4iE; + P&iB; 108 PaiE;

Suppose we have two units in different modules, A and B - let’s call them neighboring
units for short - that want to maximize their mutual information. In order for them to
do so, the above computation requires complete knowledge of the two terms in each unit’s
probability distribution, and the four terms in their joint distribution. However, each
unit only needs to accumulate two ensemble-averaged statistics: the probability that it is
on, and the probability that it is on together with its neighbor. The other terms in the
distributions can be derived when the learning rule is applied. We can estimate the overall
probability that the sth unit in module A is on by averaging its activity over the input
sample distribution:

N
Pai = <yAi> = ZPQ pﬁi (5)
a=1

where N is the number of input samples and P® is the prior probability of an input
case «.. For simplicity, from here on we will treat every case in the training set as equi-
probable, so P* = %,Va. Knowing p;, we can now calculate the probability that the
unit is off: pz = 1 — pyu;. Similarly, the joint probability that two neighboring units are
on simultaneously can be estimated by taking the expected value of the product of their
states over the sample:

N
Paisi = (Yaiysi) = D P D P, (6)
a=1
From these quantities, the remaining three terms in the joint distribution can be computed:
Paipj = PBj — PAi,Bjs PaiB; = PAi — Paij, and  prp; =1—Dpai — Paj + Daisj-
A weight update rule can be derived by differentiating I, ,,.,,. with respect to each
incoming weight to each unit:
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Full details of this derivation are given in [16].

How might such a learning rule be instantiated in biological machinery? As a first
approximation, the statistic pu; could be estimated incrementally, as a decaying average
of a unit’s probability of responding. This statistic requires only local information. On
the other hand, the computation of py4; p; is non-local in the sense that it requires the ith
unit to observe the jth unit’s state (and vice versa), without actually being driven by a
synaptic connection from the jth unit. This might be accomplished, for example, with
non-driving connections that modulate plasticity. A simple Hebb rule applied to such a
link would be sufficient to compute py; p;. Phillips, Kay and Smyth [17] have proposed
a more biologically plausible version of binary Imax they call coherent Infomaz, in which
the outputs from one processing stream modulate the activity in another stream, while
the mutual information between the two streams is maximized. Kay [18] extends this
analysis to modules having multiple outputs, and presents a number of locally computable
approximations for this case. Another way to avoid the problem of communication across
non-driving links is to maximize the mutual information between a single module’s outputs
at different points in time. This idea makes more sense when applied to discrete, multi-
valued distributions rather than binary distributions, and will be discussed further in the
next subsection.

We tested the Imax algorithm for binary units on a problem known to be impossible
for neural networks without hidden layers: the binary shift problem (details of these sim-
ulations are reported in [16]). The main point of this demonstration was to show how
Imax could learn to solve a problem that is not linearly separable.* The problem can be
described as follows: given two strings of bits, the second one being a shifted version of
the first, what is the shift? This problem may sound very artificial, but in fact it captures
the essence of the stereo disparity detection problem: given two different views of the same
image, what is the disparity between them at each region of the image?

We can apply Imax to this problem by dividing the input into local receptive fields, as
shown in Figure 2. FEach network module receives input from a different receptive field.
Corresponding neighbors A: and Bi try to maximize their mutual information. We found
that when the first layer of the network shown in Figure 2 was trained in this manner,
units tended to become somewhat tuned to shift. That is, they tended to detect particular
shifts at particular locations. Because units were only trained to maximize pairwise mutual
information, there was nothing to prevent redundancy in the first layer. But because of
differences in their initial random weights, units tended to develop a variety of receptive
field profiles. When a second layer of units was trained in exactly the same manner, these
units became even better at discriminating left from right shifts independently of position.
Although the small network shown in Figure 2 only learned to perfectly discriminate left

4Note, Imax is not “learning to solve” any specific problem in the sense that a supervised learning
procedure would do explicitly. It is just learning to maximize mutual information, and in so doing, it may
end up implicitly discovering a solution to a difficult nonlinear problem.



from right shifts after 300 learning iterations on 27 of 50 runs, second layer units always
became highly shift-tuned. Adding more units in the first layer generally caused the second
layer to do better. Presumably a sufficiently large network would nearly always solve this
problem perfectly.

Insert Figure 2 about here

When the units in the first layer were further trained by back-propagating the mutual
information derivatives from the top layer, the network shown in Figure 2 learned to dis-
criminate shift perfectly after 300 iterations on 48 of 50 runs. Another way to propagate
knowledge from the top layer down to lower layers, rather than back-propagating deriva-
tives, would be to have the lower layer units maximize mutual information with units in
the upper layers as well as with units in the same layer. To avoid local maxima, this
would have to be an approximate, asymmetric maximization of mutual information, i.e.
the upper layer units would ignore their mutual information with the lower layer units. As
the upper layer units began to catch on to the global shift across the receptive field, they
could provide more discriminating information to the lower layer units. A similar scheme
is employed in de Sa and Ballard’s Minimizing Disagreement algorithm [19], described
further in the discussion section.

The binary shift example illustrates how Imax can be used to detect nonlinear binary
features such as stereo disparity in visual images. Phillips et al [17] demonstrated that it
can also discover that edge contrast is coherent across two input streams. In the next sub-
section, we show how to generalize the learning procedure to model multi-valued features.

2.2 Discrete multi-valued signals

Binary Imax is limited to learning discrete two-valued features like left versus right shift.
However, features in real sensory data are more often continuous than binary. One way for
a group of units to represent a continuous feature is by a population code, where each unit
responds to a limited range of values of the feature. For example, orientation is thought
to be represented this way in primary visual cortex; each orientation-tuned neuron has a
preferred range of orientations that it responds best to. This kind of representation can
be modelled as a discrete random variable y4 that takes on one of m possible values. A
population code maps onto this model nicely if we interpret the units’ outputs in each
module as representing a probability distribution over the possible feature values. Each
unit’s expected output for pattern o, p%,, represents the probability that the variable
takes on one of the m possible values (or falls within one of m sub-ranges of values).
For this probabilistic interpretation of the units’ outputs, we must choose an activation
function that forces their activities to be positive and sum to one. One possible choice is
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the “softmax” activation function [20]:

ev
a
Py = 2‘7711:1 eTi (8)
where x; is the total weighted summed input to the 7th unit.
The mutual information between two m-valued variables, y4 and yg, can be computed
as follows:

Lyjys = —ZpAilogpAz ZPB; logps; + D Pai;jlogpain; (9)
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By differentiating I,,,,,, with respect to each weight w;, we obtain the following weight
update rule, shown here for the /th weight to the ith unit in module A:
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As in the binary case, for each unit, we need to know the probability that it is on,
pai- We also need to know the joint probability that it is on together with each of its
neighbors: py; ;. This time, however, we have two groups of m units rather than just
one pair of units maximizing I. So the joint probability distribution now consists of a
matrix of m? terms rather than just four terms. This complexity can be greatly reduced
by a simple approximation in computing the joint entropy [21]: instead of considering all
m? terms in the joint probability matrix, we assume that only the diagonal terms Pa; p;
are significant, and make the maximum entropy assumption about the remainder of the
distribution. This amounts to deciding a priori that the ¢th units in each module should
have a high probability of being on together, for ¢ ranging from 1 to m, and we don’t care
how correlated the ith and jth units are when i # j. Further, each unit can make its own
local approximation to the mutual information, making the maximum entropy assumption
about all the other units in the network except its neighbor, subject to the constraints that
> Pai.j = Pa; and 32, Pa; p; = Pp;. Then, as in the binary case, each unit only needs
to keep track of its own probability of being on, as well as the probability that it is on
concurrently with its neighbor. The mutual information, from the perspective of the ith
pair of neighbors, can now be computed as follows:

1 —pgi
— pailogpe — (1 _pBi)logii
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+ P log (i (11)

1)?

The above is nearly identical to the binary case (Equation 5), except for the weighting of
some of the probabilities by ——, which enforces the constraints mentioned above. To get
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a consistent global objective function for learning, we can maximize the sum of the mutual
information terms computed locally by each unit within a module.

The weight update rule is more complicated now than it was for a pair of binary units
because of the softmax activation function (Equation 8), which makes the activity of each
unit in a module depend on all the other units in same layer of the module. However, we
can break down the computation of the weight updates into two steps, so that units within
a module only need to communicate one piece of information with each other:

ol ,. 1—pa m—1)2 paini Paigi
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Alternatively, each unit ¢ could ignore the terms Mgp%“ for j # i, and we would have
a
a learning rule very much like the binary case, thougjh it would only be following the

derivative to Equation 11 in an approximate sense.

2.3 New simulation results for discrete Imax

The learning procedures defined by equations 10 and 12 have been previously applied
to several problems [13, 21]. We will now describe some new results that illustrate the
strengths and weaknesses of discrete Imax. The first set of results shows how the learning
procedure can discover non-linear features from temporally coherent visual stimuli, and
the second shows how it performs on a real speech classification problem.

One way to get Imax to learn that stimuli are temporally coherent is to maximize the
mutual information between the outputs of a single network module at successive time
steps, Iy().yt—1)- Fach unit maintains a short-term activity trace, allowing it to compare
its recent activation level with that resulting from the current pattern. Any of the learning
procedures discussed in this section would then be applicable. In the simulations reported
here, we applied the learning rule given by equation 12, with the first line of that equation
modified as follows to apply to the time domain:

1—pi - (m—1)" pii piz
SR g ) g

aly(t);y(t—l)
op!

= P (2 log

where p; ; now denotes P(y;(t) = 1,y;(t — 1) = 1) etc.

To demonstrate the capabilities of this learning procedure, we devised a simple temporal
signal classification problem. We used a set of training patterns of drifting sinusoidal
gratings as shown in Figure 3. Networks with a single module with two layers of units were
trained using the learning rule given by equation 13. Units in each layer used the softmax
activation function (Equation 8).
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Insert Figure 3 about here

The first layer of units was trained first. Not surprisingly, these units learned to detect
particular spatial frequency and phase combinations. Figure 4 shows the tuning curves of
the first nine of these units on a typical run. In this case, the network had a total of twenty
units in the fist layer, and amongst them, they spanned the entire phase-frequency space
represented in the training set. This is not too surprising because the patterns were moving
very slowly across the “visual field” of the network, so a unit with a relatively narrow tuning
curve in any part of the phase-frequency space would tend to respond consistently over
time. More interesting was what happened when a second layer of units was then trained.
There were three frequencies present in the training data, so we used only three units
in the output layer, to see whether they would learn to classify the inputs by frequency,
independent of phase. Figure 5 shows activity histograms for the three second layer units
plotted against frequency for a typical run. The histograms show that the second layer units
are very sharply tuned to particular frequencies, but their responses are phase-invariant.

‘ Insert Figure 4 about here ‘

‘ Insert Figure 5 about here ‘

The fact that Imax can learn to perform shift-invariant pattern classification is signif-
icant because this is something a single layer network could not do; the problem is not
linearly separable. It is somewhat surprising that the second layer units performed as well
as they did. While the temporal coherence in the training set spanned a fairly long time
scale (50 patterns), the patterns varied very little at short time scales, and the network
was only trying to maximize mutual information across a very short time scale of two time
steps. Nonetheless, the network was able to come close to the globally optimal solution of
separating the patterns according to spatial frequency. This suggests that Imax could learn
to recognize more complex patterns in the same manner. However, we cannot claim that
the network learned a general solution to the viewpoint-invariant object recognition prob-
lem. The first layer units learned to recognize specific “views” of each pattern class, and
then the second layer merely learned to group these views together to achieve translation-
invariant classification. There is much debate in the vision literature as to whether this
constitutes a plausible account of more complex forms of object recognition (see e.g. [22]).

The second set of results we will describe is for a speaker-independent vowel recognition
task. We used the Peterson-Barney data set consisting of the first two formants extracted
from ten vowels spoken by multiple male and female speakers [23]. These data are shown
in Figure 6. Although some of the vowel classes are linearly separable, there is much
overlap between many of the classes. We modified the vowel recognition task to simulate
multi-modal learning, as in [24], by presenting two network modules simultaneously with
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examples of spoken vowels. On each case, they received as input a pair of examples
randomly drawn from the same vowel class. This problem is meant to resemble the one
people face in trying to recognize speech from a combination of auditory and visual inputs.
Usually, the visual and auditory inputs are in close correspondence. Often, one of the
two channels is ambiguous and the other can be used to disambiguate what was spoken.
However, in our training set, the problem is made even more difficult by the fact that
because the classes overlap, the paired auditory inputs can be both ambiguous.

Insert Figure 6 about here

In initial simulations using the approximate Imax learning rule given by equation 12,
the network tended to converge rapidly to sub-optimal solutions in which several “greedy”
units’ weights grew very large, while the other units weren’t able to capture any patterns.
The greedy units each learned to capture two or more classes of vowels. The network
thus discovered that it could do a good job of minimizing the uncertainty between the two
modules’ outputs by merging many vowel classes together, at the expense of the individual
output entropies of the modules. This highlights a drawback of the approximate mutual
information (Equation 11): it tries to compress all of the density in the joint probability
matrix for the two modules into the diagonal terms, p4; p;. If two units ¢ and j move their
weights toward different classes that overlap, there will be non-zero off-diagonal terms in
the joint density, pa; pj, that tend to lower the approximate mutual information, even
though this would tend increase the true mutual information. We therefore maximized
the exact discrete mutual information (Equation 9). However, there was still a tendency
for some of the weights to grow very large and the learning to grind to a halt. We found
that a better choice of activation function prevented this from happening. Instead of using
the weighted summed input for z; in the softmax activation (Equation 8), we used an
appropriately normalized Gaussian activation function, which is relatively insensitive to
the scale of the weights:

(8% e
- e 14
|| % — s ||
x?‘ = T (15)
where || - || is the L2 norm, w; is the ith weight vector, ¥* is the input vector on case «,

and the variance of each unit, o2, is an online approximation to the true variance of the

'R
input about the unit’s weight vector: ¢2% = k > (wfj + y;) This approximation to the
variance would be exact (to within a constant factor k) if the input vectors were of fixed
length and uncorrelated with the weight vectors. In the simulations reported here, we used

k=0.1
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The learning rule for maximizing the discrete mutual information (Equation 9) using
Gaussian activation functions is:

61%4 YB
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Wiy .
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(16)

Using this learning rule, Imax networks with varying numbers of units were trained for 5000
iterations with a learning rate of 0.1 and momentum of 0.9 on the Peterson-Barney vowels.
The representations learned by Imax were compared against those obtained by fitting a
mixture of Gaussians model using the EM algorithm [25] for 1000 iterations. This latter
model, or the equivalent (e.g., Soft Competitive Learning [26]), is often used to preprocess
complex signal data for classification tasks such as speech recognition. We therefore pre-
processed the patterns by the two methods, and then fed their outputs to single layer
supervised nonlinear back-propagation networks. The performance of the classification
networks are summarized in Table 2.3. For networks with five or more Gaussians, Imax
always outperformed EM. EM typically converged to a solution where three or four of
the Gaussians captured most of the data and had fairly large variances, while the other
Gaussians captured the remaining “outliers” and had much smaller variances. While this
is a good description of the overall distribution of the data (see Figure 6), it does not
capture the ten individual vowel classes particularly well. On the other hand, Imax tended
to place the Gaussian centres in the middle of individual vowel classes or between pairs of
vowel classes, and therefore led to better discrimination. A second version of EM, with all
the variances constrained to be equal (EM1), was then tested. These results came much
closer to, or in one case equalled the performance of Imax networks of 5 units or larger, as
shown in Table 2.3. Nowlan [26] has reported a performance level of 82.6% on these data
using a Soft Competitive Learning (SCL) network of 20 spherical Gaussian units with a
single variance.

For the network with only three Gaussians, however, Imax performed much worse than
EM and EM1. It is interesting to see exactly how each algorithm divided up the vowel
classes in this case. The Gaussian centres learned by EM1 and Imax for this case are shown
in Figure 6. Notice that the data span a region of the input space shaped roughly like a
rightward pointing arrowhead. The EM objective function drives the network to learn a
good model of the overall shape of this distribution. As the figure shows, it does so fairly
well in this case by placing one Gaussian in the middle of the pointed tip of the arrowhead,
and the remaining two Gaussians in the middle of the two tails of the arrowhead. These
three Gaussian centres form a good basis for interpolating the location of any point in the
distribution. Imax, on the other hand, tries to position each of its Gaussians by merging
several vowel classes together so as to form three roughly equal-sized, non-overlapping
“super-classes”, as shown in Table 2. It is then much more difficult for a supervised
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Method Percent Correct

3 rbfs | 5 rbfs | 10 rbfs | 20 rbfs
Imax 56.36 | 71.55 | 76.37 | 78.45
EM 67.40 | 69.54 | 75.71 77.44
EM1 70.21 | 71.28 | 76.37 | 77.91

Table 1: Training set performance of single-layer supervised networks in classifying the
Peterson-Barney vowel data. The data was preprocessed by unsupervised networks with
Gaussian units, commonly known as radial basis functions (RBFs) trained by three different
methods: 1) Imax, 2) EM with spherical Gaussians (each Gaussian adapts its variance),
and 3) EM1 (1 variance for all Gaussians: each Gaussian adapts its variance, and then they
are averaged). To generate more distributed (less binary) input vectors for the supervised
networks, the variances of the Imax units were increased by a factor of 5, and those of
the EM Gaussians were increased by a factor of 10 before they were used to preprocess
the data; this substantially improved the classification performance in both cases. The
supervised networks were trained by the method of conjugate gradients with line search
for a maximum of 5000 iterations (fewer if the line search converged sooner), to minimize
the asymmetric divergence between the network outputs and target classification vectors.
The criterion for correct performance was that the unit representing the correct class should
be the most active of all output units.

classifier trained on the output of the Imax network to discriminate between those classes
which have been merged. This illustrates a point that was made in the introduction
about unsupervised learning procedures for low-level feature extraction versus higher-order
feature extraction and classification. For early feature extraction, it is best to have a very
general representation that captures as much information as possible in the input. This is
especially true if it is not known in advance exactly what tasks the representation will be
used for. Density estimation procedures like EM and SCL are good at this. On the other
hand, to achieve good high-level object or speech recognition, we need some way to map
low-level features into a representation that is invariant with respect to location and scale.
This necessarily entails a loss of information, but results in a more powerful representation
for a solving a specific class of tasks, namely, object identification.

A compromise between Imax and a mixture of Gaussians model is possible. Ghahramani
[27] developed such a model for the aligned formation of multiple topographic maps in
different sensory streams. The cost function combined four energy terms: (i) a term that
measures the model fit for each unit; (ii) a term that constrains nearest neighbors within a
modality to have similar weights; (iii) a term that encourages a one-to-one correspondence
between activities in the two maps; and (iv) a term that incorporates the discrete mutual
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Unit 1 | Unit 2 | Unit 3
0.00 1.00 0.00
0.00 1.00 0.00
0.02 0.97 0.01
0.83 0.16 0.01
0.96 0.00 0.04
1.00 0.00 0.00
0.81 0.00 0.19
0.11 0.00 0.89
0.03 0.01 0.96
0.09 0.25 0.66

Table 2: Average activity of each of the three Gaussian units for each of the ten vowel
classes. The network was trained to maximize the discrete mutual information between
the three outputs of two neighboring modules.

information between the outputs of the two modalities. Ghahramani’s final cost function
was the log likelihood of the data, computing the model probability as a function of the
total energy (a sum of the four constraints) under the Boltzmann distribution. The model
was fitted using the EM algorithm. Ghahramani showed that this learning procedure could
develop aligned topographic maps when applied to two input streams representing polar
and Cartesian two-dimensional co-ordinates.

To summarize the findings reported in this subsection, discrete Imax was able to solve
a problem that is not linearly separable (phase-invariant spatial frequency detection) by
maximizing mutual information over time in a two-layer network. On a real signal analysis
problem (vowel discrimination) Imax outperformed a mixture of Gaussians model except
for very small networks. The mixture model develops a more general representation which
is good for minimizing the reconstruction error of the data. From this representation, the
supervised network is then better able to extract the underlying classes in the data. For very
small networks, this latter solution is preferable. As a first step in preprocessing complex
signals, it is better to remain uncommitted about where to draw classification boundaries.
On the other hand, Imax may be a better model of higher-order feature extraction. It
learns classification boundaries that are more closely tied to structure that is coherent
across different input channels, and is likely to reflect important cues for perception.

17



2.4 Imax For Continuous Outputs

The discrete Imax algorithms described above are good for modelling classification prob-
lems, where the output of a neuron represents a binary feature. However, features like
stereo disparity and spatial frequency, which are important for building a representation of
the visual world, vary continuously. Thus, a continuous representation may be more natu-
ral in signal processing domains. To get a tractable expression for the mutual information
between two continuous signals, we can make various restrictive assumptions about the
network, or the units’ output distributions. One particular model which I have explored in
depth, in collaboration with Geoff Hinton [1, 16], makes the assumption that the units’ ac-
tivities have Gaussian distributions. We further assume that there is a common underlying
Gaussian signal embedded in each module’s input, but the two channels are corrupted by
independent, Gaussian noise. The mutual information between a pure Gaussian signal, s,
and a random variable equal to the signal corrupted by additive Gaussian noise, y = s+n,
is just the log of the signal to noise ratio [10]:

V(s+n)
V(n)
where V() denotes variance. In our case, we consider the shared information between two

neurons’ outputs, each corrupted by different noise terms: y, = s 4+ ng, ¥» = s+ np. The
mutual information between the two signals is:

V(ya)V (y5)
V(ya)V (ys) — V(2eg) + V (Legi)

The weight update rule for a weight to a unit in module A is as follows:

I, = 0.5log (17)

Iy,.,, = 0.5log

(18)

My, =1 [us+up = Watw) W =)= Wa—w)] o o

y:yb:Z_ b < >_(b b) < > ya(l_ya)xj (19)
Qwy =N V(Yo + ) V(Yo — )

where z; is the jth input to the unit whose output is y,, and () denotes the expectation.

See [13] for details of the derivation of the above information measure and learning rule,
and some alternative mutual-information based cost functions for this model.

2.5 Relation to canonical correlation

A standard statistical method called canonical correlation (see, e.g. [28]) can be shown to
be closely related to the maximization of Equation 18 [29, 13]. Given two sets of input
variables, x,, and xy,, canonical correlation analysis finds linear combinations 3, = W1 Xa
and y, = WE Xp that will maximize the correlation between vy, and y:

<(ya - %)(yb - %)) 20
V(W —72)%) (s — 7)) 20
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P(Yas yp) =




It is easy to show that for linear networks, maximizing Equation 18 is equivalent to perform-
ing canonical correlation analysis. Since p does not depend on the scale of y, and y;,, max-
imizing p is equivalent to maximizing ((¥a — ¥a)(¥s — U5)) subject to V(y,) = V(y) = 1.
Further, since p is invariant with respect to translations of its arguments, we can constrain
the variables y, and y; to have zero means as well as unit variances, and simply maximize
(yays)- Equation 18 is also invariant with respect to scaling and translations of the variables
Y. and . If we again constrain the variables to have means of zero and unit variances,
we find that V(y, + ) = 2 (1 + (yays)) and V(ys — 15) = 2 (1 — (yays)). From this, it is
easy to show that maximizing mutual information for Gaussian variables (Equation 18) is
equivalent to maximizing (y,ys) subject to V(y,) = V(y) = 1 and 7§, = 7, = 0, which is
equivalent to maximizing p.

The difference between continuous Imax and canonical correlation is that canonical
correlation is a linear procedure that can be solved analytically. On the other hand, Imax
maximizes an equivalent cost function in a nonlinear network which may have multiple
layers. To show how they arrive at very different solutions in general, we applied both
methods to the binary shift problem described in section 2.1. Canonical correlation reached
a degenerate solution in which all the weights were zero. This is because there is no possible
linear transformation of the binary input vectors that would make them more correlated.
On the other hand, Imax produced outputs which are perfectly correlated with the shift,
as shown in Table 3.

2.6 Applications of continuous Imax

Unlike the binary case, continuous Imax can learn to extract real-valued non-linear features.
We created a continuous version of the shift problem by creating random dot stereograms
of curved surfaces with continuously varying disparities [1, 16]. The network was able to
form a representation of the disparities in the images by learning local position-specific
features at particular disparities in the first layer, and combining these in the second layer
to form a position-invariant representation of continuous disparity. A typical disparity
tuning curve for an output neuron is shown in Figure 7. We also showed how continuous
Imax can learn to interpolate disparity across multiple receptive fields, in images of curved
surfaces.

Insert Figure 7 about here

One way to extend the model to modules with multiple outputs is to assume a Gaussian
mixture model of the underlying signal; this allows a group of units to form a population
code for a continuous real-valued feature of their inputs. In joint work with Geoff Hinton
[30], when we applied this idea to random dot stereograms, each output unit learned to
become tuned to a different range of disparities.
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Run | p(ya, shift)
-0.999921
0.993861
0.999608
-0.998067
0.998734
0.998166
-0.99953
-0.998192
0.999416
0.998595
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Table 3: The correlation between one of the outputs of a multi-layer network and the
shift after learning, when trained for 10 runs with continuous Imax on the binary shift
problem. The network consisted of two modules, each with 10 nonlinear hidden units and
one linear output unit. On each run, the first layer of the network was first trained for ten
iterations; corresponding pairs of units in the two modules maximized Equation 15. The
second layer was then trained to maximize the same objective function for ten iterations
using the method of conjugate gradients to speed up the learning, with back-propagation
of mutual information gradients to further train the first layer units.

Several other investigators have applied variants of Imax to other problems. For ex-
ample, Stone [31] proposed a cost function that maximizes the log ratio of the long-range
output variance of a unit to the short-range variance. This is an approximation to the
mutual information between the output of a unit on the current time step and the unit’s
output averaged over a recent time interval [31]; thus it is an approximation to Imax in the
time domain, as described in the previous section for discrete Imax. Stone showed that the
learning rule that maximizes his cost function is a Hebb-like rule that has a simple, online
approximation. Stone applied this learning procedure to a temporal version of the stereo
problem, and showed that his network could extract disparity from real stereo images.

Ukrainec and Haykin [32, 33| successfully applied an algorithm closely related to Imax
to a difficult signal processing problem for navigation. They used a radar system called
Polarimetric Radar for Accurate Navigation (PRAN) invented by Haykin [34], in which a
set of polarization-twisting reflectors, situated at known points along a confined waterway,
allow a ship to determine its location. A pair of orthogonally polarized antennas on board
the ship picks up the radar returns from the reflectors. The important characteristic of this
system for neural processing is that because each reflector (target) is polarized, the two
detectors will differentially respond to the target signal. The problem for the neural network
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is to discriminate features that differ in the two input channels rather than a common
feature. Ukrainec and Haykin therefore minimized the mutual information between the
outputs of two modules, subject to a constraint that prevented the weights from collapsing
to zero. The network was thereby able to learn to detect the component of the input signal
that was independent across the two channels: the target. After preprocessing the input
with a mixture of Gaussians model (RBF network) using the EM algorithm, the mutual
information minimizing algorithm was applied. This system outperformed by a factor
of two a linear Principal Component Analyzing (PCA) network, which in turn nearly
doubled the performance of a conventional cell-averaging constant false alarm rate (CA-
CFAR) processor commonly used in radar systems [32]. In further work [33], it was found
that a hybrid system combining the RBF-mutual information network with an adaptive
cancellation system, followed by a post-processing CFAR stage, outperformed all of the
above methods individually.

2.7 Imax between multivariate continuous outputs

The continuous Imax algorithm described above applies to networks which extract a single
feature that is predictive across their two input channels. When this learning algorithm is
applied simultaneously to multiple pairs of units, there is nothing to prevent all the units
in each module from doing exactly the same thing. Of course, differences in random initial
weights may result in different features being extracted. However, if there are multiple
features that vary in complexity, the lowest-order features are likely to be discovered to
the exclusion of higher-order features. For example, the average intensity in visual images
is a trivial spatially coherent feature that can be computed by a single unit, whereas a
feature like stereo disparity requires a network with nonlinear hidden units.

One way to train networks with multiple output units is to compute the mutual infor-
mation between two vectors of variables. If the outputs are assumed to represent a multi-
variate Gaussian with each element corrupted by independent Gaussian noise, ya = s + ng,
Yb = S + np, we can easily extend equation 18 to the multivariate case. Zemel and Hinton
[35] applied this idea to an object recognition problem. The cost function they maximized
was the mutual information between the mean of the output vectors and the common
underlying signal:

|Qetus
Iyatyys = 1og ﬁ (21)
Ya—Yb

where | @), | denotes the determinant of the covariance matrix of x. The weight update
rule is much more complicated in this case, because it involves the computation of determi-
nants. However, it is consequently much more powerful, because it can discover multiple
uncorrelated features. In Zemel and Hinton’s simulations, the two modules received as
input neighboring regions of images of simple randomly oriented two-dimensional objects.
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Their network was able to learn a multivariate representation of the viewing parameters
of the objects (i.e., the rotation, scale, and translation in two dimensions).

A more powerful generalization of Imax would be to extract multiple independent fea-
tures rather than just uncorrelated features. Bell [36] showed how to compute the output
entropy of a network with multiple sigmoid units. For a network that computes an in-
vertible, monotonic function of its inputs, the output entropy can be computed directly as
follows:

H(y) = (logabs(|J])) + H(x) (22)

where abs() denotes the absolute value, and |J| is the Jacobian of the transformation
computed by the network (the determinant of the matrix of partial derivatives: J;; = giﬂ ).
In order for the Jacobian to be non-zero, the output of the network must be of the same
dimensionality as the input.

We can apply Bell’s analysis to Imax, but unfortunately, it leads to a rather negative
result. For two modules of m units, each with m inputs x, and xy,, and m outputs, y, and
¥b, Imax is equivalent to maximizing the information shared between the inputs, I, ,. If
the Jacobians for each module are |.J,| and |J,|, and the Jacobian for the entire network is

|Jup|, the mutual information between the two sets of outputs is:

Iyay, = H(ya)+ H(yn) — H(ya,yb) (23)

The individual entropies, H(ya) and H(yp), can be computed using equation 22:

H(ya) = (logabs(|Ja])) + H(xa)
H(yn) = (logabs(|Js])) + H(xp) (24)

The joint entropy can be computed as follows:

H(ya,yb) = (logabs(|Jw|)) + H(Xa,Xp)

= (logabs (‘ ga 2 D} + H(Xa,Xp)

0
= (logabs (‘ . 1 ‘ ‘ 0 Iy ) ) + H(Xa,Xp)

(logabs (|Ja| [Jpl)) + H(Xa,Xp)
= (logabs (|Ja|)) + (logabs(|Jp|)) + H(Xa,Xp) (25)

where 1 is the m x m dimensional identity matrix, and 0 is the m x m dimensional matrix
of 0’s. Substituting 24 and 25 into 23, we have:

IYa;yb = H(xa)+ H(xp) — H(Xa,Xp)

= Ixa;Xb (26)
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Thus, the mutual information between the outputs, assuming the transformation computed
by the network is invertible and of the same dimensionality as the input, is equal to the
mutual information between the inputs. In other words, any function computed by the
network that spans the same space as the input would be equivalent. The maximization
of mutual information in this case has an infinite number of solutions, many of which are
degenerate. Obviously, the more interesting case for Imax is when the output dimension is
smaller than that of the input. Thus, an approximation to the joint entropy of continuous
variables is needed for this case.

3 Discussion

3.1 Computational complexity

Both discrete and continuous Imax between a pair of units can be inexpensively imple-
mented. The complexity of each gradient computation is O(n), where n is the number
of output units. To compute the exact derivatives requires two passes through the set of
training patterns, one to estimate the statistics and one to compute the gradients. These
statistics can alternatively be approximated online to reduce the learning procedure to a
single pass through the training set per learning iteration. Multivariate discrete Imax re-
quires O(n?) operations, and O(n?) storage, because each pair of units in the two modules
must compute their joint probability of being active. In a real neural network, of course,
these statistics would be computed in parallel by having connections between each pair of
output neurons that store the joint probabilities and modulate the learning. Multivariate
continuous Imax requires a rather daunting O(n?®) statistics to compute the determinant
of the covariance matrix for the two sets of units outputs. Apart from the latter algorithm,
the real complexity consideration for Imax learning comes into the training time. In all of
my simulations, Imax typically takes on the order of several thousand passes through the
training set to converge.

3.2 Biological plausibility

We touched on the question of the biological plausibility of Imax learning in Section 2.1.
The algorithm requires the estimation of correlational statistics for the joint probabilities
that pairs of units are on together. These statistics can be estimated online as learning
proceeds. However, the correlations are between pairs of output units that are not directly
connected to one another, making the algorithm somewhat implausible. Phillips et al. [17]
suggested a way of making the computation of mutual information more biologically plau-
sible: instead of having non-driving links between two units maximizing binary mutual
information, one unit’s activity could modulate that of the other unit. The modulated
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output, averaged over time, would represent the correlation between the features extracted
from the two channels. A related algorithm proposed by de Sa [24] minimizes the dis-
agreement error between the outputs of two modules. de Sa and Ballard [19] show how
this learning mechanism could be carried out using only local computations, by adding a
layer of competitive learning units on top, and having the competitive layer send modu-
latory feedback connections to the intermediary “minimizing disagreement” layer. When
two units receiving input from different channels become correlated, they would tend to
activate the same competitive unit and thereby receive reinforcing feedback; these units
would therefore move their weights closer to their current inputs, while other units would
move further away.

3.3 Alternatives to explicit mutual information maximization

The continuous Imax algorithm implicitly embodies a prior assumption about the coher-
ence of the input signal: it assumes the input contains a signal that is approximately equal
across the input channels, embedded in some other signal treated as noise. Yuille, Smir-
nakis and Xu [37] present one way to generalize this notion, so that it could be applied
to other types of coherence as well. They propose minimizing the divergence between the
network’s representation of some underlying signal and a prior distribution of the signal.
By appropriate choice of the prior, particular coherence constraints can be enforced. For
example, in one special case, assuming a prior in which the signals extracted from neighbor-
ing receptive fields are equal and Gaussian, their cost function is equivalent to continuous
Imax.

We have discussed a number of ways of generalizing Imax to allow for the extraction of
multiple features. One drawback to continuous multivariate versions of Imax is that they
involve the computation of the determinant. This is highly non-local, requiring higher-
order statistics involving combinations of more than two units. The discrete version of
Imax does not suffer from this problem, but its representation is less general. Discrete
Imax assumes the output represents a classification of the input into one of n classes.
I have proposed a learning procedure called Joint Probability Maximization (JPMAX)
for discrete networks [38]. As in Yuille et al.’s model, the goal is to fit the behavior of
the network to match a prior model. As in discrete Imax, but unlike Yuille’s model,
the JPMAX cost function depends on the ensemble-averaged joint probability distribution
(output correlations) of two modules receiving input from different channels. An arbitrary
prior model can be chosen for the joint probability distribution, for example, with a more
distributed representation such as a population code. This allows for a compromise between
the winner-take-all representation adopted by discrete Imax networks and the fully general
(but computationally expensive) case of multivariate continuous Imax networks. I have
applied JPMAX to the task of classifying images of coherently moving objects. It is able to
perform early feature extraction in intermediate layer units, as well as pattern classification

24



in output layer units. It can thus learn in several stages to do viewpoint-independent
recognition of coherently moving objects, without the need to back-propagate derivatives.

To conclude, we have demonstrated that Imax is a powerful learning procedure for
training neural networks to extract nonlinear features without external supervision. The
idea of maximizing mutual information across different input channels has now been applied
successfully to a number of different problems, described here and elsewhere [35, 1, 21,
30, 16]. Our work has been influential in the development of several related learning
procedures [39, 31, 38, 37, 17, 24, 27]. While the direct optimization of mutual information
in neural networks is computationally expensive, we have shown that the computation
is feasible in a number of special cases. Phillips et al. [17] and de Sa and Ballard [19]
have proposed unsupervised learning rules that are similar in spirit to Imax, but are much
more biologically plausible. Thus, the general idea of extracting features that are coherent
across different input channels is a promising way of deriving powerful, biologically plausible
models of self-organization.
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Figure 1: a) An information transmission model of a neuron. The mutual information
between the neuron’s input and output I(Z;y), or some measure involving I, is optimized.

b) An Imax model in which the goal is to mazximize the mutual information between the
two output neuron’s responses.
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Figure 2: The modular architecture used to solve the shift problem. Units in successive
layers within modules are fully interconnected with feed-forward links. The Imax learning
algorithm for binary units maximizes the mutual information between pairs of units’ outputs
in different modules. An example of a binary right-shifted pattern is shown.
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Figure 3: Ten successive input patterns to the nmetwork, out of a training set of 1800
patterns. Fach row of ten squares represents the states of the ten input units for a single
training pattern. Black squares are negative and white are positive. The size of the square
18 proportional to the activity level of the unit. At each time step, a new pattern is presented
to the network, and the sine wave drifts a small distance. The pattern shifts one complete
cycle after every 50 patterns or time steps, at which point the frequency changes. The
data set contained patterns of three frequencies: .1, .2 and .3 cycles per pizel. The pattern
shown here has a frequency of 0.1 cycles/pizel.
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Figure 4: Frequency-phase tuning curves of the first nine of twenty units in the first layer.
The layer of units learned by maximizing the discrete mutual information between its out-
puts at successive time steps. Fach graph shows a plot of a single first layer unit versus
spatial frequency and phase. To generate these plots, a set of test patterns was used that
had continuously varying spatial frequencies between 0.1 and 0.3 cycles per pizel. As in the
training set, phase varied continously between 0 and 2 pi radians.
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Figure 5: Activity histograms of the three units in the second layer, plotted against spatial
frequency. The layer of units learned by madimizing the mutual information bewteen its
outputs at neighboring time steps.



Figure 6: The Peterson-Barney vowel data, consisting of the first and second formant of
ten vowels, spoken by a variety of male and female speakers. Only widely separated pairs of
classes are displayed with the same symbols. The three Gaussian centers learned by Imazx
are shown with filled circles, and those learned by EM1 are shown with open circles.
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Figure 7: The output of a neuron as a function of disparity (in pizels), for a network trained
with 10 adaptive nonlinear hidden units and one linear output unit per module on random
dot stereograms of planar surfaces. The network learned by maximizing the continuous
mutual information between the outputs of neighboring modules.
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