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INTRODUCTION

Unsupervised learning algorithms can be distinguished by the absence of any supervisory
feedback from the external environment. Often, however, there is an implicit internally-
derived training signal. This training signal is based on some measure of the quality of the
network’s internal representation. The main problem in unsupervised learning research is
to formulate a performance measure or cost function for the learning, to generate this in-
ternal supervisory signal. The cost function is also known as an objective function, since
it sets the objective for the learning process. In this article, we review the most promising
algorithms for unsupervised learning. We particularly focus on two types of learning pro-
cedures: those based on information-theoretic performance measures, and those employing
maximum-likelihood density estimation. Another important class of biologically motivated
learning algorithms, based on the idea of reinforcement — whether it be externally provided or
internally generated — is covered in the articles “Reinforcement Learning” and “Hierarchical

Reinforcement Learning”.

Global objective functions or synaptic learning rules?

Since our concern is with unsupervised learning in networks and their global behaviour, we
will focus on algorithms based upon globally-defined objective functions, rather than synaptic

learning rules. By viewing the learning process as the optimization of a global objective
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function, we can reduce a global algorithm into synaptic-level steps (weight changes), but
the converse is not necessarily true; i.e., a given synaptic learning rule may not correspond
to the derivative of any global objective function. Further, a well-defined objective function
for the learning allows us to make global predictions about its behavior which are typically
not possible in a bottom-up approach. Finally, the global objective function provides a
quantitative measure of the success, or at least convergence, of the learning procedure.

In contrast to this top-down approach, many computational models of learning have
been based on synaptic or cellular constraints, such as Hebb’s postulate, and more recently,
conditions for LTP induction. Hebb postulated that a synapse’s efficacy should increase
whenever the pre- and post-synaptic neurons are co-active. Hebb’s postulate has gained
popularity among neurobiologists as a plausible candidate for a cortical synaptic learning
mechanism. A typical instantiation of Hebb’s rule relates the evolution of the synaptic
weight, w;;, to the product of the pre- and post-synaptic activities, y;, and y;, as follows:
A w;; = € ¥y; yj, where ¢ is a learning rate constant. While this rule and its variants
(see POST-HEBBIAN RULES) provide a useful way to model cellular- and synaptic-level
phenomena, they do not give us much insight into systems-level phenomena arising from
neural plasticity. A large multi-layered network of neurons all following the same Hebbian
rule does not generate particularly useful pattern processing abilities. Each neuron would

tend to behave in a greedy fashion. If we hope to understand large-scale networks of the
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brain, such as the visual system, we must find more global or network-level constraints on the
learning, such as predicting the sensory input over time, that would cause the entire network
of neurons to evolve cooperatively toward this common goal. By the same token, once a
systems-level goal for the learning has been identified and synaptic-level weight updates
have been derived, it is of interest to computational modellers to try to translate their global

learning procedures into local, biologically plausible learning rules such as Hebbian learning.

Self-organization in perceptual systems

One of the major motivations for studying unsupervised learning is to discover the gen-
eral computational principles underlying brain self-organization. Evidence of experience-
dependent plasticity has been reported in a wide variety of brain areas. Perhaps the most
startling evidence comes from a series of studies by Sur and colleagues (reviewed in Sur,
1989), who found that by artificially rerouting primary visual cortical input pathways to the
auditory cortex in ferrets, the “auditory” cortical cells develop responses to visual stimuli,
and exhibit characteristics of typical visual cortical receptive fields. These and other experi-
ments have led to the characterization of a plastic brain capable of dynamical restructuring.
Thus, the goal of biologically motivated learning research may be stated as the search for

the objective function(s) employed by the brain.
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INFORMATION-PRESERVING ALGORITHMS

Since there is no external teaching signal for unsupervised learning, the goal of the learning
must be stated solely in terms of some transformation on the input which will preserve the
interesting structure. The first task then is to define what constitutes interesting structure.
Perhaps the simplest possible goal is to try to preserve all of the information, for example,
by simply memorizing the input patterns. Pattern-associators (see ASSOCIATIVE NET-
WORKS) operating in auto-associative mode can be used as such by storing each input
pattern associated with itself. However, models that perform exact memorization tend to

have very poor capacity, and are unable to generalize their knowledge to new inputs.

Minimizing reconstruction error

Given the limited ability of networks to store a set of patterns exactly, a better strategy
might be to try to find a compressed representation of the patterns. This may be helpful
for preprocessing noisy data, and for modelling early stages of perceptual processing. Later
stages of processing may impose additional constraints on the data reduction process, such
as the need to map inputs to actions and their consequences. A standard data compres-
sion technique is principal components analysis (PCA) (see PRINCIPAL COMPONENTS
ANALYSIS). Several learning procedures (reviewed in Becker and Plumbley, 1996) have

been developed which converge to the first NV principal directions of the input distribution.
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These methods are optimal with respect to minimizing the mean squared reconstruction
error for linear networks. However, PCA will often fail to capture interesting structure such
as clustering in the data.

A more general method for finding a compressed representation that minimizes recon-
struction error is to use a nonlinear back-propagation network as an auto-encoder (Hinton,
1989), by making the desired states of the N output units identical to the states of the
N input units on each case. Data compression can be achieved by making the number of
hidden units M < N. Further, the features discovered by the hidden units may be useful
for subsequent stages of processing such as classification. However, with complicated in-
put patterns containing multiple features, it may not be possible to relate the activities of
individual hidden units to specific features. One way to constrain the hidden unit represen-
tation is to add extra penalty terms to the objective function (see BACKPROPAGATION:
BASICS AND NEW DEVELOPMENTS). For example, Zemel (1994) imposed a penalty
term on hidden unit activations that caused these units to represent high-dimensional data
as localized bumps of activity in a lower-dimensional constraint surface. This encouraged
the hidden units to form a map-like representation that best characterizes the input. Other
penalty terms lead to other forms of hidden representations, such as sparse, or combinatorial
representations (see MINIMUM DESCRIPTION LENGTH APPLICATIONS OF NEURAL

NETWORKS).
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Direct minimization of information loss

Another approach to ensuring that the important information in the input is preserved in
the output is to use concepts from information theory. This use of the term ”information” is
in a purely statistical sense, rather than the perhaps more intuitive notion that a sentence be
more or less informative based on its semantic content. Viewing a neuron or neural network
as a communication channel, one can calculate the rate of information loss through the
channel. Atick (1992) provides an excellent review of this and related approaches, as well as
a good introduction to information theory. Several learning procedures have been proposed
which minimize the information loss in a network, subject to processing constraints (reviewed
in Becker and Plumbley, 1996). The common feature of these methods is the preservation

of mutual information between the input vector x and output vector y:

Im;y = H(X) + H(Y) - H(X7Y) (1)

where H(x) = — [, p(x)logp(x)dz is the entropy of random variable z with probability
distribution p(z), and H(x,y) = — [, , p(x,¥y)logp(x,y)dx dy is the entropy of the joint
distribution of x and y. The mutual information between two variables is highest when
the variables have high entropies individually, but their joint distribution has low entropy.

For example, a variable x with a highly peaked probability distribution, p(z), has very low
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entropy, H(z); it is highly predictable a priori, and therefore a given observation of the value
of x provides very little information. In contrast, a variable with a uniform distribution
has maximum entropy; it is completely unpredictable a priori, therefore one gains maximal
information by having observed its value. Thus, I,., is high when x and y are difficult to
predict a priori, but x becomes predictable after being told y (and vice versa).

If the network is free of processing noise and has enough units, its output layer can
convey all the information contained in the input simply by copying the input. In 1988,
Linsker (for a review, see Linsker, 1997) first proposed applying the “Infomax principle” in
the presence of Gaussian processing noise at the output layer for linear networks. When
the input distribution is Gaussian, the entropy greatly simplifies from the expected value
of a log of a Gaussian, to a function of the log of the variance (or the log determinant
of the covariance matrix, for a multivariate Gaussian) (see, e.g., Atick, 1992). Hence, the

information is:

I=05log (ﬁ;;)

where |QY| is the determinant of the covariance matrix of the output vector y (the signal
plus noise) and V' (n) is the noise variance. Maximizing this quantity results in a tradeoff
between maximizing the variances of the outputs, and decorrelating them, depending on the
noise level. For a single output unit, this is equivalent to maximizing the output variance of

a unit, and leads to a simple Hebb-like learning rule. In Linsker’s more recent work, he has
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extended this idea to networks with multiple units, nonlinearities and sparse coding (cited
in Linsker, 1997).

A related optimality criterion proposed by Barlow (1989) is to find a minimally redundant
encoding of the sensory input vector into an n-element feature vector, which should facilitate
subsequent learning. If the n features are statistically independent, then the formation of
new associations with some event V' (assuming the features are also approximately indepen-
dent conditioned on V') only requires knowledge of the conditional probabilities of V' given
each feature y;, rather than complete knowledge of the probabilities of events given each
of the 2™ possible sensory inputs. Barlow proposes that one could achieve featural inde-
pendence by finding a minimum entropy encoding: an invertible code which minimizes the
sum of the feature entropies (see VISUAL CODING, REDUNDANCY, AND “FEATURE
DETECTION”).

A number of algorithms for Independent Components Analysis (ICA) (for a review, see
Lee, Girolami, Bell and Sejnowski, 2000) instantiate Barlow’s principle by direct maximiza-
tion of entropy. For example, in Bell and Sejnowski’s algorithm (reviewed in Lee et al.,
2000), a one-layer network of units with sigmoidal activation functions is able to solve the
blind source separation problem: given a linear combination of N independent sources such
as a mixture of acoustic signals, find a transformation to a set of N statistically independent

outputs. Although this algorithm is limited in its applicability to dimensionality-preserving
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mappings of linear mixtures, it has been applied successfully in a number of domains includ-
ing EEG analysis, and thus gained widespread interest in the signal processing community.
More recently, Linsker (1997) has proposed a more biologically plausible version of ICA, also
based on entropy maximization. It permits fewer than N output components and employs
information locally available to each neural unit.

Our brains may engage in something like blind source separation, for example, when
performing auditory streaming. However, unlike many ICA algorithms that are limited in
finding at most NV features in an N-dimensional input, the brain has many more neurons
than sensory inputs, and employs a sparse, overcomplete representation. Olshausen and Field
(1996) proposed an alternative instantiation of Barlow’s principle of redundancy reduction
that results in such representations. Rather than directly manipulating the entropy of the

coding, they minimized the following energy function:

E = =Y |Iy) =~ Yasley)| —ALS() )

where the leftmost term is the squared reconstruction error as a function of the image I(z,y)
and the weighted unit activations ¢;a;, and the rightmost term is a nonlinear function (e.g.,
a zero-mean Gaussian) of the unit activations chosen to enforce sparseness. The sparseness

constraint favours a small number of feature detectors being active at a given moment, while
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permitting some redundancy in the representation. The reconstruction term insures the
preservation of as much information in the input as possible. Thus, when exposed to visual
images, the model tends to form local, partially overlapping receptive fields at a variety of
spatial scales closely resembling those seen in early stages of the mammalian visual system

(see VISUAL CODING, REDUNDANCY AND FEATURE DETECTION).

Preserving information within extracted features

The methods discussed so far try to extract useful structure from data while assuming
minimal prior knowledge, and are good for modelling early sensory processing. But can
unsupervised learning be applied beyond these preprocessing stages, to extract higher order
features and build more abstract representations? One approach is to make constraining
assumptions about the structure of interest, and build these constraints into the network’s
architecture or objective function.

Spatio-temporal coherence is a ubiquitous feature of sensory signals. Becker and Hinton’s
Imax learning procedure (reviewed in Becker, 1996) discovers coherent properties of the input
by maximizing the mutual information between the outputs, y, and y,, of network modules
that receive input from different parts of the sensory input (e.g., different modalities, or
different spatial or temporal samples). Note how this objective function differs from the

Infomax principle; the latter tries to retain all of the information in the input by maximizing
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the mutual information between inputs and outputs, whereas Imax tries to extract only those
features common to two or more distinct parts of the input.

Under Gaussian assumptions about the signal and noise, Becker and Hinton simplified
the mutual information I down to a log ratio of two variances, that of the signal plus noise

and the noise, to derive the following objective function for the learning:

I =0.5log M

V{(Ya — ys)
This measure tells how much information the average of y, and y, conveys about the common
underlying signal, i.e., the feature which is coherent across the two input samples. When
applied to networks composed of multi-layer modules that receive input from adjacent, non-
overlapping regions of the input, Imax discovered higher order image features (i.e., features
not learnable by single-layer or linear networks) such as stereo disparity in random dot
stereograms. This illustrates how one part of the brain might self-organize within the visual
modality to learn spatially predictive features. The idea could also be applied to the outputs
of two different modalities to learn about their common causes (for a review of related work
see Becker, 1996). For example, when we see an object and hear a sound, the two are often

correlated and probably help us to learn object categories.
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DENSITY ESTIMATION TECHNIQUES

So far, we have focused on algorithms that try to manipulate the information preserved by
the network by imposing various processing constraints or representational assumptions. An
alternative approach is to model directly the probability distribution over the input patterns.
Many unsupervised learning procedures can be viewed in this way. The general approach is to
assume a priori a class of models which constrains the general form of the probability density
function; then search for the particular model parameters defining the density function most
likely to have generated the observed data. This approach of developing generative models
of data can be cast as an unsupervised learning problem by treating the network weights as
the model parameters 6, and the overall function computed by the network as being directly
related to the density function. The goal is to find model parameters that maximize the log

likelihood that the model generated the data, x:

log(L) = > _log(p(x | 0)) (3)

Many of the information-maximization algorithms described above can also be derived
from this generative approach. For example, the reconstruction error in autoencoder learning
can be derived as a data-likelihood term, and the additional penalty terms in the different

algorithms as particular priors over the hidden states (Zemel, 1994). And the Bell-Sejnowski
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ICA algorithm can be obtained by a particular choice of prior over the sources and a noise

model over the input (Pearlmutter and Parra, 1997).

Mixture models and competitive learning

One convenient and popular choice of prior model is a mixture of Gaussians. This model
performs a type of cluster analysis, and is the basis for deriving two more biologically plau-
sible models that we will consider afterwards. The prior assumption in this case is that each
data point was actually generated by one of n Gaussians having different means p;, variances
0;2, and prior probabilities 7;. Fixing the model parameters y;, 0;, and 7;, we can compute

the probability of a given data point x under a mixture-of-Gaussians model as follows:

n

p(x | {m}, {oi}t Am}) = domPi(x, m,01) (4)

i=1

where P;(x, 15, 0;) is the probability of x under the ith Gaussian. Applying Bayes’ rule, we

can also compute the probability that any one of the Gaussians generated the data point x:

p(i | %, (s} {o} {mi}) = = Py(x, pi, 0i)

i1 Pi(x, g, 05)

(5)
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Given these probabilities, we can now use as a cost function the log-likelihood of the data

given the model:

log(L) =3 log(p(x | {pi},{oi}, {m}))

By maximizing this function, we can approximate the true probability distribution of the
data, given our prior model assumptions. Note that by taking the log of L, we obtain a cost
function which is a sum of log probabilities, rather than a product of probabilities, for each
input pattern. The model parameters can then be adapted by performing gradient ascent in
log(L). The Expectation-Maximization (EM) algorithm alternatingly applies equation 4 (the
Expectation step) and adapts the model parameters (the Maximization step) to converge on
the maximum likelihood mixture model of the data.

Competitive learning (see FEATURE DISCOVERY BY COMPETITIVE LEARNING)
procedures can be viewed as performing a discrete approximation to the density estimation
algorithm described above, but can be implemented in a more biologically realistic neural
circuit. The general idea is that units compete to respond (e.g., by a winner-take-all activa-
tion function or lateral inhibition), so that only the winning unit in each competitive cluster
is active. The winning unit learns by moving its weight vector closer to the current input
pattern. Hence, each unit minimizes the squared distance between its weight vector and
the patterns nearest to it, as in standard k-means clustering. This version of competitive

learning is closely related to fitting a mixture of Gaussians model with equal priors 7; and
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equal fixed variances ;2. Using the EM algorithm, every unit (not just the winner) moves its
mean closer to the current input vector, in proportion to the probability that it’s Gaussian
model accounts for the current input (equation 5). Competitive learning approximates this
step by making a binary decision as to which unit accounts for the input. Thus, the same
learning rule applies, except that the proportional weighting is replaced by an all-or-none
decision.

Nowlan (1990) proposed a Maximum Likelihood Competitive Learning (MLCL) model
for neural networks. Rather than only allowing the winner to adapt, each unit adapts its
weights for every input case, in proportion to how strongly it responds on a given case.
This is an online version of the EM algorithm for Gaussian densities with equal priors, and
adaptive means and variances. Nowlan found this method to be superior to traditional com-
petitive learning models on several classification tasks. Becker (1999) extended MLCL to a
network that computes the priors using spatiotemporal contextual cues, allowing hierarchical
clustering of features based on common contexts. The architecture of Becker’s model was
motivated by the laminar and columnar organization seen throughout the neocortex. It was
shown to learn local views of an object in the first layer, and to group nearby views together

into more view-tolerant representations in the second layer.
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Combinatorial representations

A major limitation of mixture models and competitive learning is that they employ a 1-
of-n encoding, in which a single unit or feature is assumed to explain each datum. A
multiple causes model is more appropriate when the most compact data description consists
of several independent parameters (e.g., color, shape, size). Some pioneering connectionist
work in this area was done by Neal (1992). Neal’s multilayer “sigmoid belief networks”
(SBNs) resemble stochastic Boltzmann machines (see BOLTZMANN MACHINES), but they
are strictly feedforward. Output states are held fixed on training patterns selected from
the environment, while the hidden unit states are freely but noisily updated. The weights
are adjusted so as to increase the probability of the hidden units generating the training
patterns. The network thereby learns to represent features in the hidden layer which explain
correlations in the pattern set. Unfortunately, Monte Carlo sampling is a prohibitively time-
consuming way to search for good hidden layer features. Saul, Jaakkola and Jordan (1996)
proposed a way around this employing a mean field approximation for SBNs.

A major challenge in this area of research is to develop multiple cause models for multi-
layered networks with top-down feedback. Perhaps the most noteworthy attempts in this
direction are the Helmholtz Machine developed by Hinton et al. (see Dayan, “Helmholtz
Machines and Sleep-Wake Learning”) and Rao and Ballard’s model (1997). In the Helmholtz

machine, the bottom-up weights embody a “recognition model”; that is, they are used to
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produce the most probable set of hidden states given the data. At the same time, the
top-down weights constitute a “generative model”; that is, they produce a set of hidden
states most likely to have generated the data. The “wake-sleep algorithm” maximizes the
log likelihood of this model and results in a simple and elegant delta rule for updating either

set of weights:

Awy; = esg(s§ — pf) (6)

where p} is the target state for unit j on pattern «, and s is the corresponding network
state, a stochastic sample based on the logistic function of the unit’s net input. Target
states for the generative weight updates are derived from top-down expectations based on
samples using the recognition model, whereas for the recognition weights, the targets are
derived by making bottom-up predictions based on samples from the generative model. The
Helmholtz machine is restricted in training either the generative or recognition connections
at a given time. In contrast, Rao and Ballard’s model (1997) interleaves the training of
these connections. This model is based upon the extended Kalman filter. At each level,
representational nodes combine top-down predictions with bottom-up information to produce
two sources of prediction error: 1) a predicted internal state at the next time instant which

is sent to the preceding layer for predicting the bottom-up input, and 2) a prediction of the
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top-down input which is sent to the subsequent layer. Training is cast within a maximum
likelihood framework: the model fit depends upon the two sources of error mentioned above,
as well as model cost terms for each of the model parameters. The model is presented as an
account, of learning and real-time processing in the visual cortex, and is shown to develop
realistic local receptive fields as well as object-level representations when trained on natural

image sequences.

DISCUSSION

We have argued in favor of the “global objective function” approach to modelling unsuper-
vised learning processes, and explored several powerful learning procedures based on this
approach. These methods have had success in modelling early perceptual processing. With
the incorporation of highly constraining prior models, unsupervised learning procedures can
form even more abstract representations of data, and extract higher-order features. A major
direction of ongoing research is aimed at finding tractable instantiations of these learning
procedures, and to apply them in multiple learning stages to form a diversity of representa-
tional levels. Recent work by Hinton and colleagues on tractable versions of the Boltzmann

machine is a promising example of such efforts.
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