100 CHAPTER 6. DISCOVERING SPATIAL COHERENCE WITH BOLTZMANN MACHINES

connections. This is not surprising, since these weights did not affect the states of units in the non-settling
case; so a pair of units which learned, for example, to respond to left-shifted patterns, could theoretically
keep increasing the relative probability of network states for coherent left-shifted patterns by continually
increasing the weight on the connection between the pair. For the experiments described in the remainder of
this chapter, all networks were trained only with the non-settling procedure, using the method of conjugate
gradients.

There are several ways in which we could evaluate the performance of the network on the shift problem.
The absolute value of the objective function, or the relative value of state probabilities on positive versus
negative cases, would indicate the overall performance of the network. But these measures do not tell us how
the network has learned to solve the problem, in terms of the representation learned by the output units.
A better measure for this purpose is the probability that pairs of output units in different modules are on
together. This joint probability can be computed for different classes of patterns, such as the coherent left
shift cases, coherent right shift cases, etc.

For the two-way shift problem, the network in figure 6.2a) was trained for 100 iterations without settling
(as described in the previous section) using the conjugate gradient method, for ten runs starting from different
initial conditions. All the lateral connections between output units had their weights initially set to 0.1; the
rest of the weights were initialized to random values between —0.5 and 0.5. The network learned equivalent
solutions on all ten runs. The joint probability statistics for pairs of output units in different modules on
one run are summarized in Table 6.4. Units are numbered as shown in figure 6.2a); the first index refers to
the module number, and the second refers to the output unit number within a module. On this particular
run, units 1,1 and 2,2 are on together with high probability for coherent left shift cases (p = .79), and units
1,2 and 2,1 are on together with high probability for coherent right shift cases (p = .79). The same pairs of
units are on together with low probabilities on negative cases. If we look at how often these pairs of units
respond more strongly than other pairs over cases, as shown in Table 6.4, we see the effect even more clearly.
The pair of units that prefers left shifts are always the winners on coherent left shift cases, and never on any
other cases, and likewise for the pair that prefers right shifts. Thus, the network has perfectly classified the
patterns into right and left shifts, with the two output units of a given module each responding to different

shifts.

Coherent Coherent Negative

left-shift cases right-shift cases cases
(p11p21) 0.100703 0.0968108 0.400207
(p11p22) 0.785733 0.0120876 0.09746
(p12p21) 0.0129014 0.792191 0.101096
(p12p22) 0.100663 0.0989109 0.401237

Table 6.1: The joint probabilities that pairs of units are on, averaged over three different subsets of cases.
The units were trained on a simple two-way shift problem. On negative cases, the units in each pair were

shown different shifts.

For the three-way shift problem, the network in figure 6.2b) was trained for 1500 iterations without
settling (as described in the previous section) using the conjugate gradient method, for five runs starting

from different initial conditions. The output units usually became selective for one or two of the three

6.4. EXPERIMENTS WITH SINGLE-LAYER NETWORKS 101

Coherent Coherent Negative

left-shift cases right-shift cases cases
p(unityy and unity; win) 0 0 0.5
p(unity; and unitys win) 1 0 0
p(unitis and unity; win) 0 1 0
p(unitis and unitas win) 0 0 0.5

Table 6.2: The proportion of cases in which different pairs of units are the winners, i.e., the two most strongly
active units. The proportions are averaged over three different subsets of cases. The units were trained on a
simple two-way shift problem. On negative cases, the units in each pair were shown different shifts.

possible shifts, as shown in Table 6.4.

| Left-shifts No-shifts Right-shifts|

Run 1, module 1:

p(unity; wins) 0.5 0.25 0
p(unitis wins) 0.5 0.75 0.25
p(unitiz wins) 0 0 0.75
Run 1, module 2:

p(unity wins) 0 1 1
p(unitag wins) 0.75

p(unitas wins) 0.25 0 0
Run 2, module 1:

p(unity; wins) 0 0.75 0.5
p(unitis wins) 0 0.25 0.5
p(unitis wins) 1 0 0
Run 2, module 2:

p(unity wins) 0 0.75 0.5
p(unitag wins) 0 0.25 0.5
p(unitas wins) 1 0 0

Table 6.3: The proportion of cases in which each output unit is the winner within its module, for the three
different classes of shift patterns. Data are shown for two runs, starting from different initial conditions.

The joint probabilities of different pairs of units winning for different shift cases are shown in Table 6.4
for the first two of five runs. Units are numbered as shown in figure 6.2b). For this problem, since the
network did not develop a unique shift selectivity for each output unit, it could not perfectly correlate the
responses of pairs of output units in different modules. Consequently, it could not cleanly separate positive
from negative cases. In the first run, there is some shift specialization for pairs of units; units 1,2 and 2,1
are the winners on 3/4 of the coherent no-shift cases, and units 1,3 and 2,1 win on 3/4 of the coherent
right-shift cases. In the second run, units 1,3 and 2,3 win on all of the coherent left shift cases and none
of the incoherent cases, but the other shifts are divided between different units. We should note that the
learning was arbitrarily halted after 1500 iterations, although it had not fully converged. It is possible the
learning would have eventually separated the positive and negative cases, although it would clearly require

much more training time.

102 CHAPTER 6. DISCOVERING SPATIAL COHERENCE WITH BOLTZMANN MACHINES

Coherent Coherent Coherent Negative

left-shifts no-shifts right-shifts cases
Run 1
p(unityy and units; win) 0 0.25 0 0.208333
p(unityy and unitas win) 0.375 0 0 0.03125
p(unityy and unitaz win) 0.125 0 0 0.0104167
p(unitis and unity; win) 0 0.75 0.25 0.333333
p(unitis and unitas win) 0.375 0 0 0.125
p(unitis and unites win) 0.125 0 0 0.0416667
p(unitiz and unity; win) 0 0 0.75 0.125
p(unitis and unitas win) 0 0 0 0.09375
p(unitiz and unitaz win) 0 0 0 0.03125
Run 2
p(unityy and unity; win) 0 0.5625 0.25 0.125
p(unityy and unitas win) 0 0.1875 0.25 0.0833333
p(unityy and unitss win) 0 0 0 0.208333
p(unitis and unity; win) 0 0.1875 0.25 0.0833333
p(unitis and unitas win) 0 0.0625 0.25 0.0416667
p(unitis and unitss win) 0 0 0 0.125
p(unitiz and unity; win) 0 0.0 0 0.208333
p(unitis and unitas win) 0 0.0 0 0.125
p(unitiz and unitag win) 1 0 0 0

Table 6.4: The proportion of cases in which different pairs of units are the winners, i.e., in which they are
the two most strongly active units, averaged over four different subsets of cases. The units were trained on a
three-way shift problem. On negative cases, the units in each pair were shown different shifts. The data for
the two runs are for the same network, starting from different initial random weights.

6.5 Adding a feed-forward hidden layer

The experiments described up to now have been on very small, simple patterns, using single layer networks.
These simple patterns are in fact linearly separable, because we used shift without wrap-around. The shift
of such patterns can be computed from the difference of the centres of gravity of the left and right halves
of the pattern; this can be done with a single linear operator. A single linear threshold unit can therefore
learn to separate left versus right shifts, and a single layer of n softmax’ed units can (at least theoretically)
learn to separate patterns with n different shifts. If the pattern is instead shifted with wrap-around, or
if the unspecified end-bit of the shifted half of the pattern is filled in with a random value instead of a
zero, then nonlinear hidden units are required to detect the shift. The shift problem with wrap-around
falls within the class of location-invariant feature detection problems studied by Minsky and Papert, and
shown to be not linearly separable (Minsky and Papert, 1987). The shift problem with end-bits randomly
specified is as hard as the shift problem with wrap-around, because a subset of these patterns are equivalent
to shift patterns with wrap-around. In this section, we describe some preliminary experiments using the
same learning procedure on a more difficult shift problem, in DBMs with hidden units.

Adding a hidden layer to a settling network increases the annealing time dramatically, because activity
can now recirculate between the output layer and the hidden layer. Eventually the network will settle to

a free energy minimum, but this may take a very long time. We can circumvent this problem by using

6.5. ADDING A FEED-FORWARD HIDDEN LAYER 103

a hybrid architecture, as shown in figure 6.3. The top two layers of the network constitute a DBM. For
a given input pattern presentation, the hidden units’ states are clamped to a transformed version of that
pattern. The transformation is a result of the functions computed by the hidden unit’s weights and sigmoidal
nonlinearities. So there is no feedback of activity from the output layer to the hidden layer. The weights to
the hidden layer are trained by back-propagating the derivatives of the DBM objective function in equation
6.22 (derived in Appendix D).

— T
output p p p p p p
units 1] 12 13 21 22| 23

/ LA

hi
idden [| [| [T [[TIITTTITITTT]
(DBM inputs)
input 1) o o] o] o] 1] 1] 1] o]| 0] 1] 0| 1] 0] 0] 0] O 0 Eg
units 0l 0 1] 0/ o/ 0] ol 1] 1| 1| 1| 0ol 1] 0] 0] 0] 0] 1| 0] 1

random right-shifted pattern random left-shifted pattern

Figure 6.3: The hybrid multi-layer network architecture used for discovering multiple shifts in random binary
patterns, in unsupervised DBMs. The network consists of two modules, each receiving input from a separate
part of the network, and each with ten hidden units. The input units are fully connected to the hidden
units with feed-forward links in each module. The hidden units are fully connected to the output units with
symmetric connections in each module. The output units of each module are also symmetrically connected to
the other module’s output units. There are no connections between the output units within a module, nor are
there connections between the hidden units. The top two layers of the network are trained as a DBM, with the
hidden units clamped to a pattern that is determined by the states of the input units and the input — hidden
layer connection strengths. The lower layer of the network (labelled BP) is trained by back-propagating the
derivatives of the DBM objective function to the input — hidden layer weights.

We experimented with this learning procedure and the two-module network shown in figure 6.3. The
three output units of each module used the “l-of-n” encoding described earlier in this chapter, defined by
the state update equation given in 6.23, with the non-settling training procedure. The training patterns
consisted of an ensemble of 2400 forty-bit random shift patterns, with three different shifts. As before,
each pattern consisted of two sub-patterns, which served as the inputs to the two network modules. The
two sub-patterns had either coherent or incoherent shifts. The left half of each twenty-bit sub-pattern was
created by taking a random ten-bit vector, each bit flipped on with a probability of 1/3. The right half of the
sub-pattern was created by shifting the left half by —1, 0, or 1 bits. The unspecified endpoints of the shifted
half were also flipped on with probability 1/3. Complete patterns were created as follows: First, two random
ten-bit vectors, Py and Py, were generated, as well as shifted versions of these vectors: Sh(Py), Sh(P2), using
one of three possible shifts. From these vectors, two positive and two negative patterns were generated, by

taking the cross-product of two sets {Py, Sh(P1)} and {P2, Sh(P3)}. The two positive examples from this

104 CHAPTER 6. DISCOVERING SPATIAL COHERENCE WITH BOLTZMANN MACHINES

cross-product are:

P. P, Sh(Py) Sh(Py)
{Sh(Pl)Sh(Pz), Py PQ}

and the two negative examples are:

Py Sh(Py) Sh(Py) Py
{Sh(Pl) P Py Sh(Pg)}

Since the same random subpatterns occur in both positive and negative examples for each module, the

network should be unlikely to try to model any random structure in the training set, and should therefore

be more likely to model the shift.

We trained the network in figure 6.3 on the ensemble of 2400 patterns for 500 conjugate gradient iterations,
for two runs starting from different initial conditions. On the both runs, the output units became somewhat
tuned to shift. Table 6.5 shows the shift preferences of individual units, as measured by the probability
that each output unit is the winner within its module, for each class of shifts. Units nearly always show
a preference for one particular shift, although their responses are very mixed. Table 6.5 shows the joint
probabilities with which pairs of output units in different modules win on each class of patterns. As with the
one-layer network trained on the simpler three-way shift problem, the network has learned a sub-optimal,
distributed code for shift.

| Left-shifts No-shifts Right-shifts|

Run 1, module 1:

p(unity; wins) 0.458333 0.166667 0.458333
p(unitis wins) 0.5 0.666667 0.416667
p(unitiz wins) 0.0416667 0.166667 0.125
Run 1, module 2:

p(unity wins) 0.333333 0.166667 0.25
p(unitag wins) 0 0 0
p(unitas wins) 0.666667 0.833333 0.75
Run 2, module 1:

p(unity; wins) 0 0 0
p(unitis wins) 0.583333 0.25 0.416667
p(unitiz wins) 0.416667 0.75 0.583333
Run 2, module 2:

p(unity wins) 0.5 0.0833333 0.416667
p(unitss wins) 0.375 0.916667 0.583333
p(unitas wins) 0.125 0 0

Table 6.5: The proportion of cases in which each output unit is the winner within its module, for the three
different classes of random shift patterns. Data are shown for two runs, starting from different initial
conditions.

6.6. DISCUSSION 105

Coherent Coherent Coherent Negative

left-shifts no-shifts right-shifts cases
Run 1:
p(unity; and unity; win) 0.19 0.055 0.2975 0.0208333
p(unity; and unityy win) 0 0 0 0.000833333
p(unity; and unityz win) 0.1225 0.21 0.2675 0.359167
p(unitiz and unity; win) 0.02 0.03 0.015 0.181667
p(unitis and unitay win) 0.0025 0.005 0 0.00166667
p(unitis and unityz win) 0.6225 0.53 0.3475 0.340833
p(unitiz and unity; win) 0.015 0.035 0.0125 0.0208333
p(unitiz and unitag win) 0 0 0 0
p(unitiz and unityz win) 0.0275 0.135 0.06 0.0741667
Run 2:
p(unity; and unity; win) 0 0 0 0
p(unity; and unitay win) 0 0 0 0
p(unity; and unityz win) 0 0 0 0
p(unitis and unity; win) 0.3475 0.045 0.3625 0.0375
p(unitis and unityy win) 0.11 0.24 0.095 0.331667
p(unitis and unityz win) 0.0175 0 0.0025 0.0375
p(unityz and unity; win) 0.04 0.035 0.0775 0.265
p(unitiz and unityy win) 0.39 0.68 0.435 0.318333
p(unitiz and unityz win) 0.095 0 0.0275 0.01

Table 6.6: The proportion of cases in which different pairs of units are the winners, i.e., in which they are
the two most strongly active units, averaged over four different subsets of cases. The units were trained on
a three-way shift problem, with random shift patterns. On negative cases, the units in each pair were shown
different shifts. The data for the two runs are for the same network, starting from different initial random
weights.

6.6 Discussion

The learning procedure for unsupervised, deterministic Boltzmann machines described in this chapter at-
tempts to model the coherence in a set of “positive” training patterns relative to a set of incoherent, or
“negative” examples. We presented the results of some preliminary experiments with the algorithm, on
binary shift patterns. For these patterns, the coherence consisted of a higher order property of the input
patterns, namely, the coherence of shift across space. When a multi-layer network was trained on random
shift patterns, the output units became only moderately shift-tuned, and the network always learned a sub-
optimal solution. The optimal solution would be to make pairs of output units in different modules either
perfectly correlated on positive cases and perfectly anti-correlated on negative cases, or vice versa. The only
way such a pair of units could become perfectly correlated is if they both responded to the same shift, and
no other shift.

One reason the network may have found such poor solutions is the small training set size. Although we
used 2400 training patterns, there was much repetition within this training set, in order to create all the
cross-over patterns for the negative cases. Thus, increasing the training set size should improve the solution
learned by the network. We could also employ some of the same strategies we used to overcome this random

sampling problem with the Imax algorithm (see Chapters 3 and 4), such as using multiple modules and

106 CHAPTER 6. DISCOVERING SPATIAL COHERENCE WITH BOLTZMANN MACHINES

enforcing equality constraints between modules. Recall from Chapter 3 that the Imax algorithm performed
poorly on the shift problem without the use of equality constraints and large numbers of modules. When
we reduced the number of model parameters by using equality constraints, the network was able to become
well tuned to shift.

Unfortunately, as we increase the number of modules, the number of negative cross-over patterns grows
exponentially. The same is true as we increase the number of possible shifts in the data set. In order to
apply the procedure to more natural patterns, such as stereo images containing real-valued disparities, we
need a better method of generating negative cases.

For a network that must settle to equilibrium upon each pattern presentation, the training time is
rather long, even when using the mean field approximation. We have explored several ways of speeding the
simulations in practice. The first is to eliminate the settling, and use the full non-equilibrium derivatives
of the free energies in computing the weight updates. The second is to use a hybrid network with a feed-
forward hidden layer, the weights of which can be trained by back-propagating derivatives of the DBM
objective function. Finally, we can use a conjugate gradient optimization procedure to implement the
learning algorithm. Although these speedups force us to throw away most of the desirable properties of
the Boltzmann machine that we sought to begin with (i.e., a local Hebbian learning rule, recurrent activity
flow, no back-propagation of derivatives), they are merely convenient tools for accelerating the learning. In
principle, we could solve the same problems described in this chapter using a multi-layer, fully recurrent,
DBM with settling.

An appealing aspect of using a network with settling is that it can use the lateral connections to perform
interpolation across space. For example, a set of modules tuned to stereo disparity, each receiving input from
different regions of an image, could represent a dense depth map even when presented with sparse data. For
regions with missing data, the activities of the output units of a module would be largely driven by their
lateral connections, so they would tend to adopt the same states as their similarly shift-tuned neighbors.
After iterative relaxation, the network should be able to form a more globally consistent interpretation of

the depths in the scene.

Chapter 7

(General discussion

Our major goal in developing unsupervised learning procedures, as set out in Chapter 2, is to build self-
organizing network modules which capture important regularities of the environment in a simple form suitable
for further perceptual processing. We would like an unsupervised learning procedure to be applicable at
successive layers, so that it can extract and explicitly represent progressively higher order features. If at one
stage the algorithm could learn to explicitly represent continuous real-valued parameters such as relative
depth, position and orientation of features in an image, subsequent learning could then discover higher order
relations between these features, representing, for example, the location of object boundaries.

Previous approaches in unsupervised learning, such as clustering, principal-component-analyzing, and
information-transmission-based methods, have several features in common. They make minimal assumptions
about the kind of structure in the environment, and they are good at discovering low order structure such
as correlations in the raw input. These methods can be useful for preprocessing raw signal data in order to
reduce the dimensionality, improve the signal to noise ratio, and decorrelate the input components. Generally,
these methods try to model all of the structure in the environment in a single processing stage.

The approach taken in this thesis is novel, in that our unsupervised learning algorithms do not try to
preserve all of the information in the signal. Rather, we start by making strongly constraining assumptions
about the kind of structure of interest in the environment. We then proceed to design learning algorithms
which will discover precisely that structure. By constraining what kind of structure will be extracted by
the network, we can force the network to discover higher level, more abstract features. Additionally, the
constraining assumptions we make can provide a way of decomposing difficult learning problems into multiple
simpler feature-extraction stages. This general approach appears to be a promising way of speeding up
difficult problems such as object and speech recognition from raw sensory data. Once a good representation
of the environment has been learned in an unsupervised manner, a supervised learning procedure can be
applied to solve goal-directed problems such as the identification of particular objects, speech sounds, etc.

In the following sections, we evaluate the specific algorithms described in this thesis with respect to
the above goals. In particular, we consider the sort of representations these algorithms can learn, their
biological plausibility, their ability to model multiple stages of learning, and their applicability to real data,
and real-world sensory processing problems such as the fusion of natural stereo images. We close with some

suggestions for future work, and a summary of the main contributions of the thesis.

107

108 CHAPTER 7. GENERAL DISCUSSION

7.1 Representations

One desirable feature of an unsupervised learning procedure is that it transforms the input into a repre-
sentation which is somehow simpler, so that subsequent processing can be done more easily. One notion of
simplicity in a representation is that it teases apart, and explicitly encodes important underlying parameters
of the signal. The algorithms presented in this thesis have tried to explicitly represent a single parameter
which is spatially coherent in the visual world, such as depth in stereo images. We have explored a number
of ways of representing a single, real-valued parameter, including interval codes (Chapter 3, n-valued Imax),
value codes (Chapter 4, continuous Imax), and population codes (for Imax in Chapter 5, and deterministic
Boltzmann machines in Chapter 6). The population code is an efficient way of transmitting a wide range of
possible values of a signal using processing units with only a limited dynamic range of responses. It also has
a much richer representational capacity, since some degree of uncertainty can be inferred from a population
response.

Ideally, we would like to extract more than just one parameter. The Imax algorithm is based on pairwise
mutual information maximization between parameters extracted from different parts of the sensory input.
One way to generalize the continuous version of Imax to extract multiple parameters was described at the

end of Chapter 4. This method maximizes the following objective function:

|an+yb| 71
[(7.1)

Ly, +yy;signar = 0.51og

where y, and y, are parameter vectors extracted from neighboring patches, @ is a covariance matrix and |Q|
its determinant. Zemel and Hinton (1991) have applied this method to the problem of learning to represent
the viewing parameters of two-dimensional objects. This method tries to extract multiple features from an
image patch which are uncorrelated with each other, as well as being good predictors of the feature vector
extracted from a neighboring patch. The method is potentially more powerful than linear methods such
as principal components analysis, because the network can compute arbitrary nonlinear transformations in
order to extract these features. One difficulty with the method is the practical limitations of computing
determinants of ill-conditioned matrices, as mentioned in Chapter 4. Another drawback is that the represen-
tation learned by the algorithm, at least on the “viewing parameters” problem, is not all that simple. The
features the network learns to represent are typically each nonlinear combinations of the viewing parameters
(e.g., scale, location, and size), which cannot easily be interpreted by themselves.

An alternative goal is to try to extract features that are statistically independent. The general case of Imax
between pairs of feature vectors would achieve such a code. However, it would be far too computationally
expensive to implement in practice. One of the major unsolved problems in research on unsupervised learning

is to find an efficient way to discover approximate solutions to this problem.

7.2 Biological plausibility

There are two major reasons why we might want to study learning procedures which are biologically real-
izable. First, by focusing our efforts on models which are consistent with our current state of knowledge
of biological neural processing, we hope to develop algorithms which lead to a better understanding of hu-

man thought processes. Second, by incorporating brain-like computational processes and neuroanatomical

7.3. MULTIPLE LEARNING STAGES 109

constraints, we hope to develop efficient solutions to difficult perceptual processing problems.

We discussed some of the more biologically implausible details of the Imax algorithm at the beginning of
Chapter 6. These included the requirement that units be able to communicate their outputs to each other
without actually being connected to each other, the need to back-propagate derivatives to train hidden layers
of the network, and the necessary requirement that different modules receive input from non-overlapping
parts of the input. This led us to propose an alternative way of extracting spatially coherent signals, using
deterministic Boltzmann machines (DBMs), with the “contrastive clamping” training procedure. This DBM
learning procedure is based on a local, Hebb-like learning rule, and allows the network to have arbitrary
connectivity, including recurrent links between the output units. Further, different modules could have
overlapping or even identical receptive fields; for the examples presented in Chapter 6, modules would still
have to extract disparity in order to model the difference between positive and negative cases. However,
this learning procedure has the drawback that it requires one bit of supervision: the network must be told,
for each pattern it sees, whether the example is a positive or negative case. Also, the procedure does not
produce very finely depth-tuned output units for the architecture we used. It seems that the learning is very
sensitive to random structure in the training set, as is Imax. Therefore, the addition of multiple network
modules and equality constraints between modules should improve the DBM network’s ability to model shift
(as was the case for Imax).

Another implementation detail which is critical in the random dot stereogram problem is the use of equal-
ity constraints. We used equality constraints between corresponding weights of units in different modules to
force each module to compute exactly the same function. This greatly reduces the number of free parameters
in the network, and prevents it from overfitting a small number of cases in the training set. Given infinitely
many training patterns, these constraints would presumably be unnecessary. For simulation purposes, they

are a good way to speed the learning and improve the solution for small training set sizes.

7.3 Multiple learning stages

One of the “holy grails” of unsupervised learning research is a general self-organizing principle which could
operate in multiple stages, to discover many different kinds of structure. We have shown how the Imax
learning principle could be applied in several stages, by employing different architectural constraints at each
stage. In Chapter 4, we first showed how simple modules could learn to extract depth locally from small
image patches. Then a higher layer of units, receiving input from larger spatial regions, tried to predict
the depth extracted by one local module by interpolating from the depths extracted by several neighboring
modules. We could potentially keep applying the same principle at higher layers, using progressively larger
spatial extents. However, the spatial coherence of simple image properties such as depth, colour, texture,
etc. is more likely to break down as the spatial extent increases. So for larger image regions, it would be
better to try to extract some more global spatially coherent feature, such as an object’s orientation, or the
location of its boundaries. We showed how to extract local discontinuities in depth using the mixture model
of coherence described in Chapter 5. Given these locations of depth edges, we could apply another layer of
spatial-coherence modeling units to try to predict the more global coherence of depth edges across space.
A promising general approach to multi-level unsupervised feature extraction, illustrated nicely by the
stereo example described above, is to attempt to first model low-level coherence at early stages. This can

be done by limiting the search to parts of the input which are narrowly localized in time and across space.

110 CHAPTER 7. GENERAL DISCUSSION

At higher levels, the system can try to make predictions over larger spatio-temporal extents, and to model
discontinuities in the predictions of earlier processing stages. These general design principles could be applied

to a variety of learning procedures, including Imax and the contrastive clamping procedure for DBMs.

7.4 Applying Imax to real images

In Chapter 4, we presented a special case of the Imax algorithm for continuous signals, which was derived
by making Gaussian assumptions about the underlying spatially coherent features, as well as the noise. The
method was shown to work well for the problem of extracting relative depth from random dot stereograms
of curved surfaces. However, the model is by no means a complete model of human stereopsis, or a complete
solution to the machine stereo vision problem, as it ignores many of the complexities found in natural stereo
images. These include the following: 1) noisy and missing input features, 2) depth discontinuities, 3) multi-
scale ambiguities, 4) lower order spatially coherent structure, and 5) monocular local and global depth cues.
We discuss these problems below, and in some cases, discuss ways of extending the algorithm and/or network
architecture to handle these problems.

Although this discussion focuses primarily on the stereo application, it addresses many of the general
problems associated with applying the Imax algorithm to real images, regardless of the features of interest.
If we can deal with the above complexities, we can apply the Imax algorithm to real images in order to

extract many other features besides stereo disparity.

7.4.1 Noisy and missing input

Real world scenes often contain regions lacking any easily detectable features. Some regions may be devoid of
any sharp intensity changes and therefore provide no stereo disparity information. Further, since no imaging
system is perfect, features will be corrupted by noise. Our experiments with random dot patterns of varying
density show that Imax is sensitive to the dot density. The network fails to learn disparity when presented
with extremely sparse patterns. On these patterns, there is less information about disparity, so the network
tends to learn highly suboptimal solutions.

There are a number of ways to cope with this problem. One is to use a much larger data set, to
provide better statistics about disparity. Another possibility is to use a more robust objective function,
which discounts cases that provide no information. One such objective function was presented in Chapter 5,
based on a mixture model of coherence. This method is successful at identifying and throwing out cases of
discontinuities, but only if we start from good initial conditions in which the network is already somewhat
tuned to a spatially coherent feature.

The problem of noisy or missing data can be dealt with in another way, by using more global information
to fill in missing features. A Boltzmann machine can accomplish this by using feedback connections, as
described in Chapter 6. We showed one way to train a Boltzmann machine in an unsupervised manner,
using the “contrastive clamping procedure” to force it to learn spatially coherent features. Although the
algorithm was only moderately successful at solving the shift problem, as mentioned above, we expect that

with the addition of further model constraints the learning procedure would give much better performance.

7.4. APPLYING IMAX TO REAL IMAGES 111

7.4.2 Depth discontinuities

In Chapter 5, we explored several ways of extending the continuous Imax algorithm to deal with depth
discontinuities. One approach was to form a mixture model of the spatially coherent signal. This enabled a
layer of depth-extracting units to form a population code for depth. A large population of disparity-tuned
of units with different depth preferences and slightly different spatially localized receptive fields should be
able to signal the presence of a discontinuity very clearly, because two subgroups of units with very different
depth preferences would become active. Our results on the population code model were rather preliminary,
and applied only to very small populations of four or five units. Further experiments must be done to test
larger scale versions of this model, and evaluate its performance on data sets with discontinuities.

We also applied the idea of a mixture model of coherence to the depth interpolating architecture used
with the Imax algorithm. By adding a set of extra “gating” units to compute the relative model likelihoods
on each case, a set of competing interpolators was able to learn multiple interpolating models of depth, for
different discontinuity locations. Additionally, the gating units learned to explicitly model the locations of

discontinuities.

7.4.3 Multi-scale ambiguities

Another complexity of the stereo vision problem is the fact that natural scenes contain information at a
variety of spatial scales. High spatial frequency information, such as in the texture of objects, may be
useful for fine discriminations of (relative) depth. But high frequency features can give rise to ambiguities
in disparity. At a given spatial frequency, it is only possible to detect the relative phase between two
image patches, rather than the relative disparity. Fortunately, it is often possible to resolve ambiguities by
combining information at a variety of spatial scales. If we presented our network with input features at a
variety of spatial frequencies (e.g., by pre-filtering natural images using a set of band-pass filters), it should
be able to learn how to integrate information at multiple scales in order to make optimal predictions about

disparity.

7.4.4 Lower order spatially coherent structure

Our networks were able to learn to extract depth, a higher order feature of the image intensities, because
it was the only spatially coherent feature of the images. In natural images, many other features, including
shading, texture, colour, and orientation, are coherent across space. When applied to natural images, our
algorithm would be expected to discover the simplest feature first; that would most certainly be the average
intensity. To model multiple features in natural images, we could apply a multi-stage process which extracts
different features at each stage, or we could apply a learning procedure that simultaneously extracts multiple
features. The multi-stage approach is a natural way to separate low-level feature extraction from the problem
of extracting disparity. Disparity extraction could be deferred to a later processing stage by first applying
Imax to monocular images. Separate preprocessing networks could attempt to model the spatially coherent
structure in the left and right views individually. The output of these low level networks could then be

combined to extract stereo features.

112 CHAPTER 7. GENERAL DISCUSSION

7.4.5 Global constraints, and other depth cues

In addition to stereo disparity, animal visual systems appear to use a variety of monocular cues to infer
depth, including relatively local cues such as shading and motion parallax, and more global cues such as
occlusion and relative object sizes on the retina. In order to use global cues like occlusion, at least partial
segmentation of the scene into parts must first be accomplished. Coherence of stereo disparity is likely a
potent cue for segmenting parts of a scene, but it requires lateral communication between feature detectors
at different spatial locations. Another extension of the Imax model, left for future work, is to add recurrent
lateral connections between output units in different modules, so that the network can iteratively settle on a
good global interpretation. The disparity predicted by each unit would depend not only on locally computed
information, but also on the activity in the rest of the network. Neighbors which detect similar depths should
encourage each other to respond, while neighbors with different depth preferences should inhibit each other.
This would allow units with ambiguous inputs to sharpen their responses based on more global information.
On the other hand, in the case of a discontinuity, conflicting global information should cause units’ responses
to be indecisive. The whole network should settle into a more globally consistent interpretation of a depth

map, with high entropy regions indicating discontinuities.

7.5 More directions for future work

There is much room for further work on unsupervised learning. We have begun experimenting with a new
learning procedure, based on the principle of discovering perceptual invariants, which we outline below. We

then describe two other major topics for future research.

7.5.1 Learning perceptual invariants

The goal of our depth interpolating units in Chapter 4 was to discover how to predict one value from a linear
combination of nearby values, by maximizing the log ratio of the variance of the signal plus predicted signal
to the variance of the prediction error. A more general way to pose this problem is to find an invariant
relation between the predicted value and the other values by learning a linear combination of all the values,
such that the combined value always equals zero (Richard Durbin, personal communication). In this case, we
would minimize the variance of the predicting unit’s output about zero, while maximizing the variances of
the individual inputs. This amounts to discovering invariant higher-order properties by learning invariance
detectors that have low variance even though their input lines have high variances and large weights. One
attractive aspect of this view is that the actual output of an invariance detector would represent the extent
to which the current input violates the network’s model of the regularities in the world. This is an efficient
way of transmitting information about the current input. Furthermore, it has been suggested that the
computation of invariant features about the world plays a fundamental role in human pattern recognition
(Dodwell, 1983).

Several algorithms for learning invariant features of the input have previously been proposed. Uttley’s
Informon learning procedure (Uttley, 1970) tried to minimize the mutual information, for each connection,
between the activity of its input and output units with respect to its weight. Kohonen and Oja (1976)
proposed a learning algorithm for a single unit which acts as a “novelty detector”, by responding best to

patterns which are orthogonal to the principal subspace of the input distribution. Fallside (1989) proposed

7.5. MORE DIRECTIONS FOR FUTURE WORK 113

a learning procedure which implements a linear prediction filter. A unit receives input representing the
values of a signal at several time frames, and tries to make its output zero by computing the sum of the
signal at the current time slice and a linear combination of the signal values at previous time slices. Atick
and Redlich (1989) proposed an equivalent learning procedure for a spatial predicting unit, which modelled
the development of retinal ganglion cell kernels. Their cost function combined a redundancy term with an
information loss term. In the linear case, this leads to a learning rule which minimizes the output variance
of a unit by computing the error in predicting the central pixel of its receptive field by a linear combination
of nearby pixel values. This latter model is equivalent to our Imax interpolating unit, for the special case
where there are no hidden units.

An invariance detector that minimizes the ratio of its output variance divided by the variance that would
be expected if the input lines were independent Gaussian variables is a continuous generalization of the
G-Maximization learning procedure (Pearlmutter and Hinton, 1986). The goal of the Gmax algorithm is to
discover binary features by maximizing the difference between the actual probability distribution of a unit’s
output and the distribution one would expect to see if its input lines were independent. If we generalize Gmax
to the continuous case, by assuming the input signals are Gaussian, the Gmax objective function leads to two
possible solutions, either maximizing or minimizing the variance of the output of a linear unit, normalized
by the sum of the activation variances of the unit’s input lines (see Appendix E for the derivation). The
former objective is equivalent to Linsker’s Infomax principle (Linsker, 1988), for the special case he analyzes
in which the variances of the input lines are fixed. In this case, Linsker’s Infomax principle (of maximizing
the information a unit conveys about its input) leads to maximization of the the output variance of a linear
unit divided by the sum of its squared weights.

If we instead choose the latter solution of continuous Gmax, to minimize the ratio of the output variance
to the sum of input variances, we have a procedure that causes a unit to try to make its total input constant.
It therefore tries to discover some invariant combination of its input lines. At the same time, the unit tries
to have large variances (hence, large weights) on each individual input line. Since the objective forces the
weights to remain large, a unit cannot find trivial invariants, e.g., by setting all the weights to zero.

We can generalize this algorithm to apply to a set of competing units, which learn to detect different
invariant properties of the input patterns by forming a mixture model of the input distribution (see Appendix
E). Preliminary simulations show this method can learn to detect disparity in random dot stereograms;
the competing units each learn to become tuned to a different disparity. This latter model is much more
biologically plausible than the spatial coherence model, since it does not require information to be exchanged
between adjacent modules, and can produce moderate disparity-tuning in a single layer of competing units.

There are many temporally invariant features of the sensory input. The acoustic signal generated by a
particular speaker is relatively constant in overall pitch, timbre etc. As one moves about in the world, the
visual field flows by in characteristic patterns of expansion, dilation and translation. And independently
moving rigid objects are invariant with respect to shape, texture and many other features, up to very high
level properties such as the object’s identity. A learning procedure which could discover this variety of

perceptual constancies would be very exciting indeed.

114 CHAPTER 7. GENERAL DISCUSSION

7.5.2 Multi-sensory integration

There are many other forms of coherence in sensory patterns which our perceptual mechanisms rely on.
Visual, acoustic and tactile input often provide us with multiple sources of information about the same
underlying causes. For example, our tactile and visual senses give us much the same information about
objects in the world, such as the texture, orientation, and boundaries of surfaces. We can combine these
different sensory channels to disambiguate events in the world, or rely on one source when another is im-
poverished. One approach to the problem of integrating multi-sensory information is to use a supervised
learning procedure (e.g., back-propagation) in a network which combines multiple sources of information to
solve a classification task. Yuhas and colleagues (1990) have applied this idea to a network that learns to
recognize vowel sounds from combined visual and acoustic input.

However, the mapping between two different information sources may be arbitrarily complex, so that the
job of nonlinearly combining the sources in trying to solve an already difficult classification task (such as
speech recognition) is highly non-trivial. Yuhas et al. circumvented this problem by pre-training the network
to associate visual images of the speaker’s mouth with acoustic features of the vocal tract, before combining
the visual and acoustic inputs. Another possibility is to use unsupervised learning methods to transform both
the acoustic and visual signals into a common set of features. If we could learn to transform these multiple
information sources into a more compact representation, consisting of a small number of parameters that
express the mutual information between the two sources, it should then make subsequent supervised learning

much easier.

7.5.3 Temporal coherence

In addition to coherence across space and sensory modalities, a significant source of structure in the world
is the coherence of sensory information across time. The Imax learning procedure allows pairs of network
modules having adjacent receptive fields to discover spatially coherent features in visual images. The same
idea could be applied to a single network module presented with temporally coherent input sequences, to
learn features that are predictive across several time steps. For example, in image sequences of simple
two-dimensional rigid shapes moving in random trajectories in the 2-D plane, one of the simplest features
to learn, in order to predict the next time step, is the direction of motion. Over longer time scales, as
the direction keeps changing, the optimal feature for the network to learn is the identity of the object. A
multi-layer network should be able to discover features such as edges moving in particular directions in the

first hidden layer, and object categories in the output layer.

7.6 Conclusions

In this thesis, we have proposed a novel design principle for unsupervised learning procedures. We start by
making constraining assumptions about what kind of structure in the world is perceptually relevant. We
then derive neural network learning algorithms and architectures that embody these constraints.

We have proposed an information-theoretic unsupervised learning algorithm called Imax, based on this
design principle. This algorithm uses the assumption that there is spatial coherence in the visual world,
to try to discover spatially coherent image features. This assumption is strongly constraining, but widely

applicable to perceptual tasks. To apply the Imax algorithm to images, the assumption of spatial coherence

7.6. CONCLUSIONS 115

is embodied in both the architecture and objective function. The architecture is constrained so that separate
modules receive input from physically separate sensors. The objective function can be formulated in several
ways, depending on whether one chooses a discrete or continuous model. In the former case, the objective
is to maximize the mutual information between parameters extracted by different modules. In the latter,
it is to maximize the information that these parameters convey about some presumed common underlying
signal, which is assumed to be Gaussian.

We illustrated the discrete version of Imax (Chapter 3) on two problems: (i) classifying simple sinusoidal
intensity patterns of different spatial frequencies and phases, and (ii) classifying binary random shift patterns.
This discrete algorithm is best suited to modelling properties of the input which can be grouped into separate
classes, as opposed to modelling real-valued features. In Chapter 4, the continuous version of Imax was
illustrated on the problem of detecting stereo disparity in a restricted class of stereo images, using random
dot stereograms. We also applied Imax in a second stage of learning, using the same principle to interpolate
depth across larger spatial extents. Extensions to mixture models of coherence, applied to the continuous
case (Chapter 5), allowed the network to learn population codes for depth, multiple surface interpolators for
images with discontinuities, and locations of discontinuities.

We also proposed two alternative classes of algorithms for discovering spatially coherent features. One
was based on a novel, unsupervised training procedure for deterministic Boltzmann machines (Chapter 6).
This was applied to a restricted ensemble of binary shift patterns consisting of examples labelled as either
spatially coherent or incoherent with respect to shift. The second class of algorithms, proposed in an earlier
section of this chapter, was based on the idea of discovering spatially invariant features in the visual world.
Both of these algorithms show promise, as more biologically plausible procedures for learning based on spatial
coherence.

One conclusion we can draw from all of our experiments is that it is difficult for an unsupervised learning
procedure to extract high-level features from noisy data which may also contain lower level regularities,
even when the extraction of the high-level features ultimately leads to more globally optimal solutions. The
use of equality constraints to reduce the number of free parameters in the network can greatly improve the
chance of discovering more globally optimal solutions. Training set size is obviously another important factor
in reducing sampling error. However, it is usually not possible to simulate unsupervised learning in large
networks (i.e., for large input dimensionality) on adequately large training sets, due to computing resource
limitations, so heuristics such as equality constraints are a more feasible solution.

The problem of multiple levels of coherent structure is a major barrier to applying the algorithms pre-
sented here to natural images. A promising way to deal with the problem is to use more stages of learning.
Early stages can try to extract lower order structure from parts of the input which are narrowly restricted
both spatially and temporally. Later stages can combine information across larger spatial and temporal
extents. This information could be in the form of lower order spatially coherent features, as well as spatial
or temporal discontinuities in those features.

The learning procedure we have described builds into the objective function (and the architecture) a type
of prior knowledge that is strongly constraining, but widely applicable to perceptual tasks. We have applied
the idea to the problem of learning spatially coherent features in visual images, but the same idea could be
applied to learning coherent features across different sensory modalities, and across time.

Our simulations demonstrate the general utility of the Imax algorithm in discovering interesting, non-

trivial structure (disparity and depth discontinuities) in artificial stereo images. This is the first attempt we

116 CHAPTER 7. GENERAL DISCUSSION

know of to model perceptual learning beyond the earliest stages of low-level feature-extraction, and to model

multiple stages of unsupervised learning.

Appendix A
The learning equations for discrete

Imax

This appendix is divided into two sections. In this first section we derive the learning equations for Discrete Imax in

the binary case. The second section shows similar derivations for the n-valued discrete case.

A.1 Discrete Imax for binary variables

We first consider the case where a spatially coherent parameter is represented as a binary variable. We want to
maximize the mutual information between samples of this variable, y; and y;, extracted from neighboring image
patches. We further assume that the network module assigned to each input patch is connected in a strictly feed-
forward manner, it may have zero or more hidden layers, and it has a single output unit.

Each output unit computes a nonlinear probabilistic function of its real-valued total input z; = Ek WikYk, USIing
the sigmoidal nonlinearity:

1

f(fﬂ):m

For a particular input case «, the output of the ith unit represents a binary variable y; € {0,1}, which is 1 with

probability
pi = f(z7)

However, rather than using stochastic output units and sampling each y; to estimate the p;s, we use the exact
values of the p;s as the outputs. The hidden units’ outputs are deterministic real-valued variables, and use the same
non-linearity as the output units in computing their outputs: y; = f(z;).

We can estimate the overall probability of the events y; = 1 and y; = 0 for the sth output unit by averaging over

the input sample distribution:
N
pi = Y Pl
a=1
pro= 1—p

where N is the number of input samples and P is the prior probability of an input case a. We treat every case in

the training set as equi-probable, so P® = %,Va.

117

118 APPENDIX A

Similarly, for a pair of binary units in a feed-forward network that are not connected to one another (but may
share the same inputs), and hence whose outputs are independent given a particular case, we can compute the four
possible values in the joint (discrete) probability distribution of the binary variables y; and y; represented by their

outputs p; and p;, as follows:

Py = Y P
(a3

Py = P — Py
Pz = Pi— Pij
Py = 1—pj—pi+pi

The partial derivatives of the (expected) individual and joint probabilities with respect to the expected output of

the sth unit on case o are:

Jap; a

e = F

ap; a

85; = ~-F

b -
T2~ P
T = —P-g)

The amount of information transmitted by the ith unit on case o when it is on is:

I(yi =1) = —log p;’

If the log is base 2, the units of information are bits; for the natural log, the units are nats. From here on, we
use log to denote the natural log. When the value of y{* is unknown, the average information (or equivalently the

entropy or uncertainty) in y{* is:
H(yi") = —[pi log pi* + p7 log p7’]
Averaged over all input cases, the entropy of y; is:
H{(y:) = —(log p(y:)) = —[p:log pi + prlog pi]
The mutual information between the outputs of the ¢th and jth units, y; and y;, is:
Iyi;y5) = H(yi) + H(y;) — H(yi, y5)
where H(y:,y;) is entropy of the joint distribution p(yi, y;):

H(yi,y;) = —(logp(yi,y;))

= —[pi;log pi; + pijlog piz + ps; log pr; + piylog pr)

APPENDIX A 119

The partial derivative of I(y;; y;) with respect to the expected output of unit ¢ on case «, p*, can now be computed;

since H (y;) does not depend on pf, we need only differentiate H(y;) and H (y:,y;).

9H (yi) d
= —[—(pilogpi + prlog pz
ap2 ap?[(pilog pi + prlog pr)]

_ _[3pz' log pi Opi | Ops P7 6‘1%]

¥z - 1 Pr -
apr BPt y apr T apr BT piape

H

dp dpr
= [aa(logp:+1) éUv?(IOgPA—l)]

= —[P%(logpi +1) — P*(logpr + 1)]
= —P%log il
rr

OH (yi,y g
% = [—(pi; log pij + pijlog pis + ps; log ps; + pilog pry)]

_ _ [61):‘] log pij Opi; Ipi; log Py, O3

pis + + ry+ 2
ap2 7 i op T Op? 7 ey Op?

apz‘j
aps

|

p” apiz apu p” Ipey
1 1 - 1 -
08 Piy 5 0P ap? J 7 0Py

dp dps
= [3 ;(logp”—kl)—l—ap](logp,]—l—l)
Piy

Lo
op;
= — [P"p](logpi; + 1) — P*p; (log pr; + 1)
+P%(1 = pj)(log pis + 1) — P*(1 — p})(log piy + 1)]
= —Pa[pflogT—}-p] log ij]

)

Opiz
ap?] (log pr7 + 1):|

(log Pi3

Ol(ys;y;) _ OH(yi) O9H(yi,y;)

ap¢ ap ap¢

= —-pP° [log — —p7 log —p7 log = Piy
bz bz Py

) L)

A.1.1 Differentiating I with respect to the weights by back-propagation

The partial derivative of I(y;;y;) with respect to an incoming weight to the ith output unit is computed as follows:

0l(ys;y;) _ Zaf(yi;yj)é‘p? 9z
Owik apy 0z Qwik

@

_ A (Yi;¥5) 11/ av. a
= wa(wi)yk

@

The derivative of the sigmoid function is:
fi(=3) = f(=)1 = £(=7))

The partial derivatives of I with respect the hidden units’ weights are computed in the same manner as in the

back-propagation learning algorithm (Rumelhart, Hinton and Williams, 1986). Using the chain rule, the gradients

120 APPENDIX A

for a given layer are computed from those of the layer above. We start at the top layer, where each unit computes
the derivative of the objective function, I(y;;y;), with respect to its total input:

0l(yisys) _ 01(yisy,) 9p5 _ O(ws; us)
8:6? dap dz? apf

J J

f'(=3)

Then, for each remaining layer L, traversing layers in reverse order (from the 2nd last to the input layer), each

unit k£ in layer L computes the partial derivative of I with respect to its total input, = 7, using a weighted sum of

the partials computed by the layer above, ﬁ:
Js
Ol(yisy;) _ O1(yi; y;) 923141
azg,L 9z L+1 ‘%g,L

aj(yi; yg) azﬁLH dy?,L
dz

"y a
i,L+1 ayk,L d‘”k,L

2

= Z (% wix f(zh 1)

1, L41

The final weight update is computed by multiplying by the above by the presynaptic input, and accumulating

these terms over cases:

(yi;u) de yi; ;) 078 L
OWkm oz 1 IWkm

_ 231 vi; U5)
(?sz ’L_1

A.2 Discrete Imax for n-valued variables

We now consider the case where a spatially coherent parameter is approximated as an n-valued discrete variable. We
give the derivations in slightly less detail than for the binary case, as they are very similar. As in the binary case, we
want to maximize the mutual information between two parameters, A and B, extracted from nearby image patches,
A and B. In this case the parameters are discrete n-valued random variables, A € {a1---an}, and B € {b1---bn}.
A set of n units is assigned to each patch. The output of the sth unit of patch A on case «, p4, represents the

probability that parameter A takes on value a; on that case:
eE?A
PO

where z34 is the total weighted summed input to the ith unit for patch .A. Similarly, the probability that B takes

P(A=a; | a)=piy =

on value b; on the same case is:
ex?B
P(B=b;|a)=pjs=
and the joint probability of these events given case « is:

P(A=a;,B="b;|a)=pp;s

Each point in the individual and joint probability distributions of A and B can be estimated from its expectation

APPENDIX A 121

in the sample distribution:

N
P(A=a) = Y Ppiu

N
P(B=1b) = Y Py
a=1
P(A=a;,B=b;) = ZPQP?AP?B

As in the binary case, P® = %,Va.

The mutual information between two n-valued variables, A and B is:

I(A;B) = H(A)+ H(B)— H(A, B)
—ZP = a;)log P(A ZP ;)log P(B = b;)

+Y P(A=a;, B=t;)log P(A=ua;, B=1)

13
The derivatives of the above probabilities with respect to the total input z7 4 to the kth output unit for patch A

on a particular case o can be computed as follows:

OP(A = a;) _ PQ%
dz 3 4 9Ty 4
OP(A=ai,B=10b;) . o 04
9z 5 B 7% day Tra
opiy Pea(l—pra) ifi=k
drg, { —PiAPEA otherwise

Note that the output of the ith unit, p; 4, depends on the total inputs of all of the competing output units for module
A, zpa.

The derivative of I with respect to the output of the ith output unit is:

dI(A;B) _ 9H(A) 9H(A,B)
Iy op3y Ipy
- —[log(P(A:a,')—l—l]M

I
+) [log P(A=ai, B =1b;)+1]

J

= —[log(P(A=a:)+1] P*+ > [log P(A = a;, B =1b,)+1] P*pSls

OP(A = a;, B = b;)
Py

—P% |log P(A = a;) — Y _log P(A=as, B=1b,)pjs

J

The derivative of I with respect to a weight in the network is computed, using the above expression for M in a

manner identical to that shown in Subsection A.1.1, substituting I(A; B) for I(yi;y;).

122 APPENDIX A

Appendix B
The learning equations for

continuous Imax

In the real-valued case, we assume that the underlying spatially coherent signal is continuous and approximately
Gaussian, as are the parameters extracted from nearby image patches, y; and y;. Each unit deterministically computes
its output y; according to some (linear or nonlinear) function y; = f(z;) of its total input, z; = Ek Wik Yk-

In Chapter 4 we presented experimental results using two alternate objective functions for this case. These
objective functions were derived under different assumptions about the signal. In the first model, the ith unit
assumed its output to be a noisy version of the signal, y; = signal + notse, and its neighbor’s output to be the pure
signal, y; = signal; at the same time, the yth unit assumed y; = signal 4+ noise, and y; = stgnal. (We discussed
in Chapter 4 the problems associated with these assumptions, and presented two alternative models.) In the second
model, both units assumed y; = signal + noise; and y; = signal + notse;. In the following two sections, we derive

the learning equations for each of these.

B.1 Model 1.

Our preliminary experiments used the following objective function:!

I(yi;9;) =0.5 <10g V(‘;(!f)yj) +log V(Zz(y_])yj))

For unit 7 to maximize the above information measure, it must store four statistics: its output mean (y;) and
variance V'(y;), and the mean and variance of the difference of the units’ outputs, (y; — y;) and V(y; — y;). These

statistics are computed in an initial pass through the training set:
1 &

(ys) = N Z yi
a=1

Vig) = 5 S5 — ()’

a=1

1We actually added a small constant x to the denominator terms V (y; — y;); this prevents the information measure from
growing infinitely large and stabilizes the convergence. Thus a minor change to the above derivation is required when we add
in this stabilizing term. The stabilizing term x is necessary for noise-free problems which the network can solve perfectly,
by making V(y; — y;) zero while keeping V(y;) and V(y;) large. For the random dot stereogram problem the stabilizer is
unnecessary, as there is sufficient random variation in the training set to prevent the network from perfectly solving it.

123

124 APPENDIX B
1 N
(i—v) =5 > =)
a=1

N
1 (a3 (a3
Vi —w) =g Doy = (i —)
a=1

Now we can compute the partial derivative of the information the sth unit conveys about the jth unit with respect

to the output of the ith unit on case a:

lo + lo

Iy} ayr | B Vg —) Vi —u)
dlog V(yi) B 2310g Viyi —yj)

oyg ayg

1 oV (w) _ 2 oV (yi —yj5)
Vi(yi) 9y V(vi—y;) 9y

12 2 1 2 2
——(=y — =) -2 |—0——(= —¥]) — ={yi—1
Ty vy T v [V(yi_y])(N(y i) = i =)

2 o —(ws) 7 — 7)) — (s —w)]

Mlyi;y;)) 0 [V(y:) V(yi)]

N1 Vi(yi) V(yi —v;5)

The derivatives of I with respect to the weights are computed exactly as in Appendix A.1.1, substituting 65;10, for

a1

= -
Bpl

B.2 Model 11

In the second model, we maximize the following objective function:

r=1 (2 i) = 0sleg e —
2 V(Reistatnoisey
= 0510g (Szg:;ise —noQiseb)
V(e
v Yyity;
V(yzzyg)
= 0.51o V(yi—i—y])
Vi(yi —u,)

Each output unit must store four statistics, for each neighboring output unit j7: the mean and variance of the sum

and difference of the units’ outputs, {y; + y;), V(yi +v;), {yi —y;) and V(y; — y;). These statistics are computed in

an initial pass through the training set:
| &
(Wit v) =5 > 0 +97)
a=1

1 < (23
Viyi +y;) = N E(yz +y;)2 —{y: + ’!/J>2

Vii—v) =« D =) = (v —)

APPENDIX B 125

Now we can compute the partial derivative of I* with respect to the output of the ith output unit on case «:

al*y,;y]‘ — 05 a Ogv(yi+yj)
Iy gy " Viyi —y)
— 05 |2loeVyity) dlogV(yi—y;)
ay? ay?
—oosl 1 Vwitw) 1 3V(yi—yj)]
| Viyi +y;) 9yf Vi(yi—y;) 0y
[1 2 2
= 05| (o (u + yf) — (v +
_V(yierj)(N(y y7) = (v + i)
1 2w 2

TV =) W TY) - N(yi—yﬁ)]

1yt 4y = (v) (y?—yf)—(yi—;w)]
B)

N Vi(y:) Viyi — y;

The derivatives of I* with respect to the weights are computed exactly as in Appendix A.1.1, substituting I™* for

ar*
I, and B for

oI
Bpl“

126 APPENDIX B

Appendix C
The learning equations for Imax with

mixture models

In Chapter 5, we extended the continuous Imax learning procedure in several ways, using mixture models. Three
different models were considered. First, we assumed a model in which a spatially coherent signal is roughly equal
in nearby patches, and can be approximated by a mixture of Gaussians; under this model, we showed how a set of
competing units, each of which is assigned to model one of the mixture components, can learn to form a population
code for depth. Second, we formed a mixture model of coherent and incoherent cases, and trained a network to
maximize [only on coherent cases, thereby throwing out cases with discontinuities. Third, we formed a mixture
model of the signal across curved surfaces, and trained a network to learn multiple interpolating models for depth,
as well as discontinuity detectors to gate the interpolators. We also presented an alternative objective function for
the third model, based on the mixture of competing experts algorithm (Jacobs, Jordan, Nowlan and Hinton, 1991).
In the following four sections, we show derivations of the Imax learning equations for the three models, as well as the

learning equations for the competing experts implementation of the third model.

C.1 Imax based on a mixture model of the spatially coherent
signal: Population codes

Under a finite mixture model of a signal, s, the signal is assumed to have come from one of a set of n alternative
distributions, fi(s;8;), each characterized by a parameter vector ;. Each probability distribution function, f;,
represents the probability of s given the ith model.

The total probability of a particular observation of s can be computed by decomposing this observation into the

probabilities of s given each model:
n
p(s) = Z i fi(s, 0:)
i=1
where the 7;s are the “mixing proportions”, or marginal probabilities of the models.

For our spatial coherence model, we assume that there is some spatially coherent signal s, whose probability

distribution can be modelled by a mixture of n equi-probable Gaussians having equal variances:

In= 1 mp?ja0
p(s):_z e—(s—pi)?/2

V2no

127

128 APPENDIX C

Under this mixture model, the probability that s was generated by the ith Gaussian is:

e—(s—ni)?/20”

pi(s) = 42] e—(S—Mj)2/2°'2

For each input patch a, we have n competing output units. We interpret the linear output of each of these units, yiq,

as the signal shifted toward the mean of the 1th Gaussian, plus noise:
Yia = § — Wi + noiseiq

The variance of the Gaussians, o2, is estimated by each output unit to be some proportion 1" of its own output
variance (0 < T < 1); this variance is approximately equal to a constant 7" (which absorbs T') times the sum of its
squared weights (assuming equi-variance independent signals on its input lines): o’ = T'V(yi) = TZ] 'w?].

Under the above assumptions, we can compute the probability that each of the n Gaussians generated the signal

on a particular case, purely in terms of the outputs of the group of units:

e—¥ia? /(2T V(yia)

3. v /2T V(yja))
J

IR

Ppia(s)

The information that the :th neighboring modules’ outputs convey about the common underlying signal, s, given

that model 1 holds, is;

Vi (yia + yi
I(yia + yiv; s | model i) = 0.5log 7‘/1.@%; i— 5‘3

where the Vi%’s are the variances given that the underlying signal in patches ¢ and b was generated by the :th model.
These variances are computed by weighting each term by the probability that model i holds in both image patches,

Piab = PiaPib, for that case:

Vi“b(yia +yip) = <(yia + 'yib)2piab> — {(Yia + yiv) Piad)’
Vi (g0 — yip) = <(yia - yib)QPiab> — {(Yia — Yiv) Piad)’

The total objective function to maximize is:

iab(, . o
*ok Yia + ytb)
1 = 0.5 {piap) log ———=
Z Z <) Vzab(yia _ yib)
a<b 1
where (piab) = (pmpib> is the expectation that the ith model holds in patches a and b, averaged over all cases.
The derivative of the total probability of the ith model holding for patches a and b, {pias), with respect to the
total input, z%,, to the kth output unit for patch a on case « is:
a(piab) a_ a ap‘?‘
- =Pl
azy, azy,
The probability of the signal in patch a, under each model i, on a particular case o, can be differentiated with

respect to zj, as follows:

ap?a — 7] _yia pga(l - pga) ifi=k%
axga azga ZTV(yka)

—PiaPha otherwise

_ y?a dyl?a pga(l - p?a) ifi=k
TV(yka) dz3, o otherwise

APPENDIX C 129

To differentiate the same probability with respect to a weight to the kth output unit, wg;, we also need to consider

how that weight affects pg, via the estimated variance, V(yka):

O Opl Oz, apg, OV (yka)
dwe; oz, Qwk; af/(yka) dwe;
— 8]7?& al‘ga 4 ygaQ av(yka) pga(l - pga) ifi=%
Oz, Ow; Tv(yka)2 dwk; —PiaPha otherwise
X G Yo 2 @ (1—p,) ifi=k
— ap;a dzka _|_ Ayka z'wk] pka(pka) e .
Oxy, Owk; TV (yra)? S otherwise

The partial derivative of the objective function I** with respect to the output of the kth output unit on case «

is:

61** V (yta + yzb)
= 05 E E Piap) log —— e T 0]
ay}‘:a a [b 8 Vzab(yta - yzb)
log Vi« (yia + yin) 0log V'®®(yia — yiv)
=YY <pmb>< ! - !
b B [ayka 8yka

9 (pias) 1 Vit (g0 + yz‘b)]

|

(o] -
oy 8 Viab(yiq — yi)

Piab) AV (yia + yin) {piab) V' (yia — yiv)
OSZZ[W -

(Yia + yis) oy, Vied(yi — yip) oy,

Vzab(yta + yzb) a o OPia
+ log Vzab(_ yzb) P Piv aya

ka
- 05 Z pkab pkab (z(ya + ya) _ 1(!]}@ + ykb))
Vkab yka + ykb) N ka kb N a

i (20 ey 20)
Vkab(yka_ykb) (!/ka ykb) N<yka ykb>

pzab) 1 a a 2 ap?ab
+;0.5 Yia + ¥iv — (Yia + ¥ S o
3 [ty o Gt

(piab) 1 @ a . -

Viab(yia _ 'yib) N (yza Yiv (yza yzb>)
Vi (yia + i) 1 1 o Op%
Viab(,yia _ yzb) N b ayka

2 ap?ab
Yia

+ log

1 Yha T Yko — (Yka T ¥re) (Yha — Yiks) — (Yka — Yis)

= Z N [(pkab>pkab < VE (yra + Yo - Vb (yhq — yis))

b
0 o — (g 4oy))2 e a2
+ 0.52 <<piab> (yia + Yo (Yia +yir))” (pras) (v, vib (ia — yiv))

Viab(y,a + yip) Viab(y;a — yip)
V”“b(ym + yzb)) a 31)%]

+1 :
og Vtab(_ yzb) P bayga

To compute the derivative of I** with respect an incoming weight wx; to the kth output unit for patch a, we

must include the effect of the variance term V(yrq):

or-x _ Z ar** dyy, dzyn, Z ar** opfy OV (yka)
dwr; oyg, dzg, dws; Ipg, OV (yka) Ows;j

130 APPENDIX C

81** dyka axka yuz + y:)z’; — <yi0~ + yib>)2
= 0.5 ia :
Z 8yk dzk awk] + ZZ p b Vzab(yia +yzb)

@

— (pras) (yia — i — (ym - yib)) Vi (yia + yz‘b)) o Pl OV (yka)

. +log — ‘
Viab(yia — yip) °8 Viad(yiq — yiv) P YOV (yra) Owr,

For other weights in the network, the derivative is just:
ar** Z i
OWwim azy, Owim

This can be computed by back-propagation, as shown in Appendix A.1.1.

C.2 Imax using a mixture of coherence, discontinuity models

We can deal with discontinuities by forming a mixture model of coherence and incoherence, and only maximizing
information about the signal on coherent cases. We applied this model to the depth interpolating units described in
Chapter 4. The goal of the learning is to predict a locally extracted parameter y., by computing a weighted sum of
parameters extracted from four nearby image regions, §. = Wa¥a + We¥s + Wayd + wey.. We estimate the probability
of the continuity model holding, on a given case «, as follows:

N(§2,ye, Veone (92))
N (92,92, Veone (98)) + kdiscont

pcont(?]g) =

where kgiscont 1s a constant representing a uniform density, Veont(§c) is a parameter which is gradually shrunk over
the course of learning, and N is the normal distribution:
1

N(g?a ve, Vcont('!)C)) = T eXP(_(g? - y?)Q/zvcont (!)6))
27"‘/cont(yc)

The objective function to maximize is:

Veont (Ye + §ec)
Teont = 0.5 Peopt log ———————=
t C Ve (v =00

where P.ont = (pwm(g)c» is the total probability of the continuity model across cases, and the Vionts are the variances

given the continuity model. The variances are are computed as follows:

<(!)c + yc)Qpcont(?)c)> - <(!)c + yc) pcont(gc)>2
(9 = ye)* Peont (c)) — (e — Ye) Peont (i)

‘/cont(g +yc)
‘/cont(- yc)

The probability of the continuity model for a particular case can be differentiated with respect to the outputs of

the interpolating unit, g2, and the local depth-extracting unit, y2, as follows:

apcont(gg) _ A ~ 1 ~Q a
age = _Pcont(yc)(1 - Pcont(yc)) Vwm(gc) (yc — Y)
apcont(@?) _ _ 8pcont (!)g)
dye age

The objective function /con: can now be differentiated with respect to the output of the interpolating unit on case

APPENDIX C 131

a, g
ajcont 8 ‘/cont(yc + yc):|
—_ = 0.5 = Pcon log ——
ayg ayg [< t> 8 ‘/cont(yc - yc)
= 0.5 <pcont> alog ‘/Confgyc + yC) - alog ‘/co'nfgyc — yC)
age ag¢
a <pcont> ‘/cont (,_l) + y):|
+ —— log —
942 Veont (§c — ye)
— 0.5 <pcont> 8%ont(gc + yc) _ <pcont> 8‘/cont (gc - yc)
_‘/cont('gc + yc) aﬁg ‘/cont(?}c - yc) agg
‘/cont(gc + yc) @ 8pgont:|
+1lo — P -
8 ‘/cont(yc - yc) ayg

_ 0'5[<pcont>pgont

(§@2+92) = e+ o))
Veont (e + ye) \N e TYe) = et e

<pCOTLt> pcont (2 2 -)
‘/cont yc - yc yc N<yc yC)
<pcont> 1 ~lt ~ 2 8pgont
=7 c t¥Ye — (Yt ¥c T ora
Veont(§e +ye) N (e +ve = (et ued) age
<pcont> 1 ~Ct @ ~ 2 apgont
T r oy v e =Y — \Ye— Ye Hra
‘/cont(yc - yc) N (< >) dyg
‘/cont(gc + yc) 1 ap?ont:|
+1lo
& ‘/cont(y - yc) N ayc
_ 1 o [ty —(Fetye) (32 —yl) — (G — ye)
a7 <pcont>pcont -) - - .
N ‘/cont (yc + yc) ‘/cont(yc - yc)

) (92 —y& — (§e — 9e))?
‘/cont(gc - yc)

- <pcont

L1 [<pwm> (52 + y& — {Jc +yc))°

ﬁ ‘/cont(?]c + yc)
‘/cont(?)c + yc):| 3])?07”
‘/cont(?)c - yc) a!)g

+ log

The derivative of I with respect to y2 can be computed in a similar manner. Given % and %, the
derivatives for all the weights in the network can easily be computed by applying the chain rule, using the back-

propagation procedure described in Appendix A, Section A.1.1.

C.3 Imax using a mixture of coherence models

The final mixture model we considered in Chapter 5 caused a network to learn a mixture of interpolating models,
and a set of location-specific discontinuity detectors. We assume, as in the previous section, that there is a spatially
coherent parameter which can be predicted at any given image region by linearly combining several values at spatially
adjacent regions.

Like the model in Section C.1, we have a set of competing output units, each trying to form a different model
of the current case. But this time, each is trying to learn a good interpolator for a locally extracted parameter
Ye, Jic = WialYa + Wis¥s + WiaYa + WieyYe, for the set of cases on which the ith model holds. Instead of making the
probability that each model holds a function of the interpolators’ outputs, we allocate a set controlling units, in
one-to-one correspondence with the interpolators. The output of the :th controller, p;, represents the probability

that the ¢th interpolator’s model holds.

132 APPENDIX C

Each controller’s output is a normalized exponential function of its squared total input:

7i215(2)?

P = —E ‘ esz/é.(zj)2
J

As in the population code model, we divide the squared total input in the exponential by an estimate of its
variance, 6(z;)* = kzﬂ. w;i2.
The objective function to maximize is identical to the one for the population code model presented in Section

C.1, except that the p;s are computed differently:

- Vi (§ic + ye
= Z (p:) log ﬁ
where the V's represent variances given that the sth model holds.

The derivation of the learning equations for this model is very similar to those of the previous two sections. It
is made simpler by the fact that separate units compute the p;s. So we can consider separately the effect of the
variables §. and y. on I (which depend on weights to the interpolating units and their hidden units) and the effect
of the pis on I (which depend on the weights to the controller units).

The derivative of I** with respect to the output of the ith interpolating unit, %, on case « is:

91" 9 VEi(§ic + yc)]
~ = 0.5f : lo —_—
g5, 997, [<p) log Vi(fic — ye)
_ ([olog Viggic +ye) dlog VV(gic — ye)
= 0.5(p:) _ Dic o
= NI 1 OV'* (§ic + ye) 1 OV (Gie — ye)
= 0.5 <pz> T — — — -
-V (yw + yc) ayic \4 (yzc - yc) 6‘in
[Pi 2 0 a 2 .)
= 05 2 "7(_16 Yo — —{Gic Ye
<p>_V*(yic+yc) N(y +ue) N(y + ye)
_L<i caay 2,)]
Tl =5 (W —8) = gyl —w
- l(z,.)pq ie +ye = (Jic+ye) (Fie —ye) = (Jic = ye)
N ' Vt(gic + yc) Vz(gic - yc)

From this term, we can easily compute the derivatives of I with respect to weights affecting the interpolating units
(including those of the hidden units), using back-propagation.
The output of one controller, p;, depends on the inputs to all of the other controllers, z;, as well as its own,

because of the normalization. The derivative of pj® with respect to the total input to the jth controller is:

ap) z] (1 —pf) ifi=y
0-2

- (z)

oz dz % —pipy otherwise
2z py(1—py) ifi=j

J
J

o?(z;) —p; Py otherwise

To compute the derivatives of the p;s with respect to the weights, we also need the derivative of the p;s with respect

to the approximated variance of each controller, o2(z;):

op 9 < z) pr(1—pf) ifi=j

do2(z;) 902(z;) \ o*(z;) —pipy otherwise

APPENDIX C 133

(z5)° | (1 —pf) ifi=j

o*(z;) —pi Py otherwise

The derivative of I** with respect to the output of the ith controller, p{, on case « is:

or** B Vi(gic + yc):|
—— = 05— [{pi)log ————=
ap? apF [< M08 v —v0)

log Vi(jic +yc) dlog V' (§ic — ye 3 (ps Vi §ic + ve
s [m)(g é)(a) Odlog 6‘(a) 4 a<a>logvi(.~. s)
S s S (Gic — ye)

— 0 5[{pi) V(G +ye) (i) 9V'(dic — yc) Vi(dic + ye) 1]
=0. —— ~ - ~ +log ——+ —
Vi(§ic + ye) Aps Vi(§ic — ye) aps Vi(fic —ye) N
<p1> 1 ~Qu @ ~ 2 <p1> 1 =1 @ ~ 2
=05 |77 (Hic T ¥ — {Fic+¥c = i v Wic = Yo — (Yic — Ye
[Vz(yiﬁyc) v e +ye = (Gic +ye)) Vi -9 N (Fic —ye — (Jic —9e))
Vl(gtc+yc) 1:|
+log ———— —
gvz(yic_yc) N
1 Uee 'a_'Aic Ye 2 'A?c_'g_'Aic_'c 2 Vi'ﬂic Ye
_ost [<) (waryic =Gt ye)” 00 ye - (Fie —9e))” | 1og i(!{ +y)]
N V (y1c + yc) V (yic - yc) V (yzc - yc)

C.4 Mixture of competing experts

We can reformulate the problem solved by the learning procedure in the previous section, using an unsupervised
version of the mixture of competing experts algorithm (Jacobs, Jordan, Nowlan and Hinton, 1991), assuming that
the inputs to the interpolating and gating units are fixed (that is, we do not back-propagate derivatives through the
hidden layers to adjust the weights to the units in layers 1 and 2). The output of the it" expert, Ji,c, 1s treated as the
mean of a Gaussian distribution with variance ¢ and the normalized output of each controller, p;, is treated as the
mixing proportion of that Gaussian. So, for each training case, the outputs of the experts and their controllers define
a probability distribution that is a mixture of Gaussians. The aim of the learning is to maximize the log probability
density of the desired output, y., under this mixture of Gaussians distribution. For a particular training case, «, this

log probability is given by:

a a 1 y? - @?ﬁc ?
log P(yo) =log Zpi oL exp (—%)

where the variance parameter o is fixed, and each mixing proportion, p;, is computed by one of the controller units

as follows:

69312/20'2
pi = W
J
and each mean, §; ., is computed by one of the interpolating experts:

Ji,c = WiaYa + WibYp + WiaYa + WieYe

The derivative of the objective function on each training case, log P(y¢), with respect to the output of one of the

interpolating units, y{, is:

d a
Wlog P(yc)

i,¢

1 E))
B | D P e V(e 6o
P(y?) - J 8y]a,c (2)

134 APPENDIX C

1 a a a ~a 2
Pz' A—N'ca'icaa
P(ye) " 032 (e, §er)

2,c

PP ~ 2 y? - g?:c
- P(‘;g)N(y?ayf:Caa)T

The derivative of the output of one controller, p7, with respect to the total input to the yth controller, =7, is

opt =i) pi(1—p) ifi=y
9z o? —pipy otherwise

The derivative of log P(y¢) with respect to the output of a controller, pf, is:

alog P(yg) 1 a o~ 2
= N(yc,¥ic,0
e P Wt)

Appendix D
Equations for learning by contrastive

clamping in DBMs

In Chapter 6, we introduced a way to train Boltzmann machines using an unsupervised (or, more accurately, semi-
supervised) learning procedure we refer to as contrastive clamping. We used deterministic Boltzmann machines
(DBMs) with a restricted architecture. The architecture consists of two (or more) modules. Each module has input
units whose states are determined by patterns drawn from some environment, and n output units, whose states
encode an n-valued parameter using a “l-of-n” encoding. The state of the ¢th output unit for a module a is defined
as follows:

eZia/T

Pia = 72 e-’ﬁja/T
J

where z;, is the total input to the ith output unit in module a. The output units of neighboring modules are fully

interconnected (but there are no within-module connections between output units).

D.1 Networks that settle to equilibrium

Since the network has recurrent connections (the connections between the two module’s sets of output units), the
units states are updated so as to settle to fixed points defined by the above equation. To do this, we repeatedly,

synchronously apply the following state update rule to all of the output units, until the system converges:
eZia()/T

E] e%ia(t)/T

It can be shown (given the mean field assumptions for the DBM, stated in Chapter 6) that a system which follows

pia(t) = npia(t—1) + (1 —)

the above dynamics converges to a minimum in the Helmholtz free energy, defined as follows for systems with n-state

units:

F = E-TH
= =) wiypp + 1Y pilogp
i<y J

We define the probability of a distribution of network states when the inputs are clamped to a positive pattern,

135

136 APPENDIX D

«, relative to the probabilities for all patterns in the training set, , as follows:

Pl.) T

Y, PUp) Y e T

where 3 indexes over both positive and negative cases, and F} is the free energy of the equilibrium distribution with
visible units clamped to pattern o.
The objective function to maximize is the log probability of the network generating the set of positive training

cases, @ € ST, relative to the combined set of positive and negative training cases § € S =St US™:

) e
log =——F=== log | =577
> Eﬁes 2 el = —wm

aesSt

The derivative of the objective function, the log likelihood of the positive training cases, with respect to one of

the weights in the network, wj;, for (positive) training case « can be computed at thermal equilibrium as follows:

F} P(Ia)) 1| 0F. 1 _pyrr0Fg"
log = —= — _ 5
a'w]i < E ses Ilg) T a‘w],‘ E ves e_Fv /T ; 6‘w]1

1 a_ a 1 Fg* /[T B
= T |PiP; — 7_};*”26 7 P]
T EWGSE v Bes

D.1 Non-settling networks

For a network with recurrent connections which we pre-train without settling, we set the states of units as follows,
omitting the lateral /recurrent inputs from the z;.s (we can do this by initializing the states of output units to zero,

and then applying the following state update rule once):

eialT

Pia = Ef—;;;7F
J

When a network is permitted to settle to the equilibrium distribution, the following holds:

aFOL* _ o a
du,. = PR
If we have not settled to equilibrium, it is no longer true in general that % = 0,V1, so the derivatives are more

complicated. In this case, the partial derivative of F' with respect to a weight from a hidden unit to an output unit

in module a is computed as follows:

Fs 6‘F apz
a a dE, api 9Hq ap?
_ -7
pkap]a'i'z: ap? a‘w]‘k Z ap?‘ (?w]‘k
= = Y wa [2 gy 2 +T Uogpia+ 1), o
alja — auhk P aw gk
ap dpi Ozj

Jw;k (‘h? Jw;k

APPENDIX D

For a weight, w;;, between two output units in different modules,

Therefore,

l 6‘2:;1 p?a(l _p?a) lfl:]
T dw;k —Pialja otherwise

p;la(l_p;la) le:]
—Pialja otherwise

p—]“O(
= Tyk

pfa 0P _
dwj; o dwj; o
aF, o a

—Pialjb

Jwj;

137

138 APPENDIX D

Appendix E
Equations for learning perceptual

invariants

In Chapter 7 (in the section on future work), we described an objective function for a procedure which learns invariant
properties of the input. The algorithm we propose is based on a continuous generalization of the GMAX algorithm
(Pearlmutter and Hinton, 1986). GMAX is an unsupervised learning procedure for a single, binary stochastic unit.
The goal of the learning is to maximize the Kullback divergence between the actual output distribution of the unit,

P(y;), and the distribution @(y;) which would be expected if the unit’s input lines were independent:

S P
= P(yi=1) log 5(52723 + P(yi =0) log ggz: i g;

where y; is the binary output of a unit.

We can generalize the GMAX algorithm to the continuous case, assuming that y; is computed as a linear function
of the inputs, and that the inputs all have Gaussian distributions. In this case, P and @ are Gaussians, so the
actual probability distribution of y; is the normal distribution P(yi) = N(yi, ¥, Vp(yi), where Vp(y:) = V(yi). The
expected distribution given independent input lines, @, is a Gaussian with the same mean but a different variance:

Q(yi) = N(yi, Vi, Vq(yi), where V(y:) = Vq(z wijy;) = E] 'w?]V(y]). In this case, the G-error is

J

[w2

%e—(y,—m)z/mﬁa(y,)
= <;e—<yl—m2/zvp(m)log V2 Vo(ua) >

G(P,Q)

1 e—(wi—ui)?/2Vq(y:)

27V (yi) V2mValo))

= (L v (1 V) (i) (v)
2mVy (i) Vo) 2Vel(wi) 2V (u:)

Valys) Voly) | Val(ys)

= 0.5log Vo(yi) 2Vi(wi) © 2Vq(w:)
_ 5 Ve(yi) _ o M
= 0. [V(i) 1+ log Ve (yi)]

139

140 APPENDIX E

Differentiating G' with respect to y; yields the following:

9GS Valyi) = Vi(yi) 1 Ve(y) 1 9V(yi)
dyi Va(yi) Volyi) Oy Volys) Oy
_ O.SVq('yi) - Vp('yi) g log Vq('yi)
Va(yi) dyi Vu(yi)

Depending upon the initial conditions, the system either converges to a minimum or a maximum of the term:

Vq('yi)
8 ¥, (wo)

To see this, note that if initially Vo(yi) > Vp(yi), then the multiplier % is positive, so % is in the same
q T T

Vg (vi)
N log 71ty . e i . S
direction as Zp(y’) . Moving a small amount in this direction will increase the ratio \\:Zgz’%, so the multiplier will

remain positive, and keep getting larger. If, on the other hand, initially Vo(yi) < Vp(y:i), then the multiplier is

negative, so the variance ratio will be minimized.

We can choose the former solution, which maximizes the ratio KZEZ’;, by just maximizing the objective function
log %. This results in a unit which tries to maximize the sum of the variances on its input lines, while minimizing
plY:

the variance of its output. This objective function fulfills the desired criteria of an invariant-discovering unit, by
finding a set of weights which usually makes the inputs sum to zero, while keeping the weights large.

To generalize the idea to multiple units, we can adopt a mixture model of the input, and assume that the input on
each case is modelled by one of a group of competing units. Each unit 7 responds in proportion to the goodness-of-fit
of its linear model:

o2 /T

A collection of units compete to respond to each pattern. The probability that each unit’s model holds is given
by:

i /T

Ty e

We can maximize the same objective function, but using the variances of each unit’s total input, z;:

Di

Vy(zi)

o8 y5we)

which are computed as before for y;, but this time we compute the variance for the sth unit given that the :th model
holds. Thus, we weight the variance contribution for the sth unit on each case by p;.

Now the total objective function to maximize is:

wij? V(z;)

D

Vi(zi)
i log
Z: Vi (i)

Bibliography

Ackley, D., Hinton, G., and Sejnowski, T. (1985). A learning algorithm for boltzmann machines. Cognitive

Science, 9.
Aczél, J. and Daréezy, Z. (1975). On measures of information and their characterization. Academic Press.

Almeida, L. B. (1987). A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment. In Proceedings, 1st First International Conference on Neural Networks, pages 609-618, San

Diego, CA. IEEE.

Ambros-Ingerson, J., Granger, R., and Lynch, G. (1990). Simulation of paleocortex performs hierarchical
clustering. Science, 247:1344-1348.

Anderson, S. (1988). Dynamic system categorization with recurrent networks. Proceedings of the 1988

Connectionist Models Summer School.

Atick, J. J. and Redlich, A. N. (1989). Predicting ganglion and simple cell receptive field organizations
from information theory. Technical Report IASSNS-HEP-89/55, Institute for Advanced Study, Princeton.

Atick, J. J. and Redlich, A. N. (1990). Towards a theory of early visual processing. Technical Report
TASSNS-HEP-90/10, Institute for Advanced Study, Princeton.

Bahl, L. R., Brown, P. F., de Souza, P. V., and Mercer, R. L. (1989). A tree-based statistical lan-
guage model for natural language speech recognition. IEEE Transactions on Acoustics, Speech and Signal

Processing, 37(7):1001-1008.

Baldi, P. and Hornik, K. (1989). Neural networks and principal components analysis: Learning from

examples without local minima. Neural Networks, 2:53-58.

Ballard, D. H. (1986). Cortical connections and parallel processing: Structure and function. The Behavioral
and Brain Sciences, 9:67-120.

Barlow, H., Kaushal, T., and Mitchison, G. (1989). Finding minimum entropy codes. Neural Computation,
1:412-423.

Barlow, H. B. (1985). Cognitronics: Methods for acquiring and holding cognitive knowledge. Unpublished

manuscript.
Barlow, H. B. (1989). Unsupervised learning. Neural Computation, 1:295-311.

141

142 BIBLIOGRAPHY

Barlow, H. B. and Fdldidk, P. (1989). Adaptation and decorrelation in the cortex. In The Computing
Neuron, chapter 4, pages 54-72. Addison-Wesley Publishing Corp.

Barrow, H. G. (1987). Learning receptive fields. In Proceedings of the IEEE first annual conference on
Neural Networks, pages 115-121.

Barto, A. G. and Sutton, R. S. (1983). Neural problem solving. COINS Technical Report 83-03.

Becker, S. and Hinton, G. E. (1989). Spatial coherence as an internal teacher for a neural network.

Technical Report CRG-TR-89-7, University of Toronto.

Becker, S. and Hinton, G. E. (1992). A self-organizing neural network that discovers surfaces in random-dot

stereograms. Nature, 355:161-163.

Bialek, W., Ruderman, D. L., and Zee, A. (1991). Optimal sampling of natural images: A design principle
for the visual system? In Advances In Neural Information Processing Systems 3, pages 363-369. Morgan

Kaufmann Publishers.

Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982). Theory for the development of neuron
selectivity; orientation specificity and binocular interaction in visual cortex. Journal of Neuroscience,

2:32-48.

Birch, E. E., Gwiazda, J., and Held, R. (1982). Stereoacuity development for crossed and uncrossed

disparities in human infants. Vison research, 22:507-513.

Birch, E. E., Stager, D. R., Berry, P., and Everett, M. E. (1990). Prospective assessment of acuity and
stereopsis in amblyopic infantile esotropes following early surgery. Investigative Ophthalmology and Visual

Science, 31(4):758-765.

Blakemore, C. and Cooper, G. (1970). Development of the brain depends on the visual environment.

Nature, 228:477-478.

Blakemore, C. and van Sluyters, R. (1975). Innate and environmental factors in the development of the

kitten’s visual cortex. Journal of Physiology, 248:663-716.

Bridle, J. S. (1990). Training stochastic model recognition algorithms as networks can lead to maximum
mutual information estimation of parameters. In Touretzky, D. S., editor, Neural Information Processing

Systems, Vol. 2, pages 111-217, San Mateo, CA. Morgan Kaufmann.

Brown, P. F., Cocke, J., Della Pietra, S. A., Della Pietra, V. J., Jelinek, F., Lafferty, R. L., Mercer, R. L.,
and Roossin, P. S. (1990a). A statistical approach to machine translation. Computational Linguistics,

16(2).

Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., and Mercer, R. L. (1991). Word sense disambiguation
using statistical methods. In Proceedings of the 29th Annual Meeting of the Association for Compuational
Linguistics, pages 265-270.

Brown, P. F., Della Pietra, V. J., de Souza, P. V., Lai, J. C., and Mercer, R. L. (1990b). Class-based
n-gram models of natural language. In Proceedings of the IBM Natural Language I'TL, pages 283-298.

BIBLIOGRAPHY 143

Carpenter, G. and Grossberg, S. (1983). A massively parallel architecture for a self-organizing neural

pattern recognition machine. Computer Vision, 37:54-115.

Carpenter, G. and Grossberg, S. (1987). ART 2: Self-organization of stable category recognition codes for

analog input patterns. Applied Optics. Special issue on neural networks.

Cottrell, G., Munro, P., and Zipser, D. (1987). Image compression by back-propagation: an example of
extensional programming. ICS Report 8702.

Crawford, M., Smith, E., Harwerth, R., and von Noorden, G. (1984). Stereoblind monkeys have few
binocular neurons. Investigative Opthalmology and Visual Science, 25(7):779-781.

Crawford, M., von Noorden, G., Meharg, L., Rhodes, J., Harwerth, R., Smith, E., and Miller, D. (1983).
Binocular neurons and binocular function in monkeys and children. Investigative Opthalmology and Visual

Science, 24(4):491-495.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via
the EM algorithm. Proceedings of the Royal Statistical Society, B-39:1-38.

Derrington, A. (1984). Development of spatial frequency selectivity in striate cortex of vision-deprived
cats. Ezperimental Brain Research, 55:431-437.

Dodwell, P. (1983). The lie transform group model of visual perception. Perception and Psychophysics,
34(1):1-16.

Fallside, F. (1989). On the analysis of multi-dimensional linear predicitve/autoregressive data by a class

of single layer connectionist models. In IEE Conference on Artificial Neural Networks, pages 176-180.

Foldidk, P. (1990). Forming sparse representations by local anti-hebbian learning. Biological Cybernetics,
64:165-170.

Frégnac, Y., Shulz, D., Thorpe, S., and Bienenstock, E. (1988). A cellular analogue of visual cortical
plasticity. Nature, 333(6170):367-370.

Freund, Y. and Haussler, D. (1992). Learning hidden causes. In to appear in Advances In Neural Infor-

mation Processing Systems 4. Morgan Kaufmann Publishers.

Fukushima, K. (1975). Cognitron: A self-organizing multilayered neural network. Biological Cybernetics,
20:121-136.

Fukushima, K. and Miyake, S. (1982). Neocognitron: A new algorithm for pattern recognition tolerant of
deformations and shifts in position. Pattern Recognition, 15:455-469.

Grossberg, S. (1987). Competitive learning: From interactive activation to adaptive resonance. Cognitive

Science, 11:23-63.

Hartman, E. J. (1990). A high storage capacity neural network content addressable memory. Technical
Report ACT-NN-173-90, MCC.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall, London.

144 BIBLIOGRAPHY
Hebb, D. O. (1949). The Organization of Behavior. Wiley, New York.

Held, R., Birch, E. E.; and Gwiazda, J. (1980). Stereoacuity of human infants. Proceedings of the national
academy of sciences USA, 77(9):5572-5574.

Hinton, G. E. (1987). Connectionist learning procedures. Technical Report CMU-CS-87-115, Carnegie-
Mellon University, Pittsburgh, PA 15213.

Hinton, G. E. (1989). Deterministic Boltzmann learning performs steepest descent in weight-space. Neural

Computation, 1:143-150.

Hinton, G. E. and Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In Parallel
distributed processing: Ezxplorations in the microstructure of cognition, pages 282-317. Cambridge, MA:
MIT Press.

Hinton, G. E., Sejnowski, T. J., and Ackley, D. H. (1984). Boltzmann machines: Constraint satisfaction
networks that learn. Technical Report CMU-CS-84-119, Carnegie-Mellon University.

Hirsch, H. V. B. and Spinelli, D. (1970). Visual experience modifies distribution of horizontally and
vertically oriented receptive fields in cats. Science, 168:869-871.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences U.S.A., 79:2554-2558.

Hopfield, J. J. and Tank, D. W. (1985). ‘Neural’ computation of decisions in optimization problems.
Biological Cybernetics, 52:141-152.

Hubel, D. and Wiesel, T. (1963). Receptive fields of cells in striate cortex of very young, visually inexpe-
rienced kittens. Journal of Neurophysiology, 26:994-1002.

Huber, P. (1985). Projection pursuit. The Annals of Statistics, 13(2):435-475.

Intrator, N. (1990). A neural network for feature extraction. In Advances in Neural Information Processing

Systems 2, pages 719-726. Morgan Kaufmann Publishers.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive mixtures of local experts.
Neural Computation, 3(1).

Jepson, A. D. and Jenkin, M. R. M. (1989). The fast computation of disparity from phase differences. In
Proceedings of the IEEE CVPR, pages 398-403.

Judd, J. S. (1987). Complexity of connectionist learning with various node functions. COINS Technical
Report 87-60.

Klopf, A. H. (1987). Drive-reinforcement learning: A real-time learning mechanism for unsupervised

learning. In IEEE First Annual Conference on Neural Networks, San Diego, California.

Kohonen, T. (1982). Clustering, taxonomy, and topological maps of patterns. In Lang, M., editor, Pro-
ceedings of the Sizth International Conference on Pattern Recognition, Silver Spring, MD. IEEE Computer

Society Press.

BIBLIOGRAPHY 145
Kohonen, T. (1988). The ‘neural’ phonetic typewriter. IEEE Computer, 21:11-22.

Kohonen, T. and Oja, E. (1976). Fast adaptive formation of orthogonalizing filters and associative memory

in recurrent networks of neuron-like elements. Biological Cybernetics, 21:85-95.

Kosko, B. (1986). Differential hebbian learning. In Denker, J. S.; editor, Neural Networks for Computing,
AIP Conference Proceedings, Snowbird, Utah, pages 277-282.

Kullback, S. (1959). Information Theory and Statistics. Wiley, New York.

Lang, K. J. and Hinton, G. E. (1988). A time-delay neural network architure for speech recognition.
Technical Report CMU-CS-88-152, Carnegie-Mellon University.

le Cun, Y. (1987). Modéles Connezionnistes de U’Apprentissage. PhD thesis, Université Pierre et Marie

Curie, Paris, France.

Lehky, S. R. and Sejnowski, T. J. (1990). Neural model of stereoacuity and depth interpolation based on
a distributed representation of stereo disparity. The Journal of Neuroscience, 10:2281-2299.

Linsker, R. (1986a). From basic network principles to neural architecture: Emergence of orientation-

selective cells. Proceedings of the National Academy of Sciences USA, 83:8390-8394.

Linsker, R. (1986b). From basic network principles to neural architecture: Emergence of orientation

columns. Proceedings of the National Academy of Sciences USA, 83:8779-8783.

Linsker, R. (1986¢). From basic network principles to neural architecture: Emergence of spatial opponent

cells. Proceedings of the National Academy of Sciences USA, 83:7508-7512.
Linsker, R. (1988). Self-organization in a perceptual network. IEEE Computer, March, 21:105-117.
Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979). Multivariate Analysis. Academic Press.

Maurer, D. and Lewis, T. L. (1992). Visual outcomes in infant cataract. In Symposium on Infant Vision

Research.

McLachlan, G. J. and Basford, K. E. (1988). Chapters 1 and 2. In McLachlan and Basford, editors,

Muzture models: inference and applications to clustering, pages 1-69. Marcel Dekker, Inc.

Merzenich, M. (1987). Dynamic neocortical processes and the origins of higher brain functions. In The
Neural and Molecular Bases of Learning, Dahlem Konferenzen, pages 337-358. John Wiley and Sons
Limited.

Merzenich, M. M., Allard, T., Jenkins, W. M., and Recanzone, G. (1988). Self-organizing processes in

adult neo-cortex. In Organization of neural networks: Structures and models. VCH publishers.

Miller, K., Keller, J., and Stryker, M. (1989). Ocular dominance column development: Analysis and
simulation. Science, 245:605-615.

Miller, K. D. (1990). Correlation-based models of neural development. In Neuroscience and Connectionist

Theory. Lawrence Erlbaum Associates.

146 BIBLIOGRAPHY
Minsky, M. L. and Papert, S. (1969). Perceptrons. MIT Press, Cambridge, Mass.

Minsky, M. L. and Papert, S. (1987). Perceptrons: A View from 1987, chapter Prologue and Epilogue.
MIT Press, Cambridge, Mass.

Moody, J. and Darken, C. (1989). Fast learning in networks of locally-tuned processing units. Neural
Computation, 1(2):281-294.

Neal, R. M. (1992). Connectionist learning of belief networks. to appear in Artificial Intelligence.

Newell, A. and Simon, H. A. (1981). Computer science as empirical inquiry: Symbols and search. In

Haugeland, J., editor, Mind Design. Cambridge, Mass.: The MIT Press.

Nowlan, S. (1990). The hard versus soft distinction in competitive adaptation. Ph.D. Thesis Proposal,

Department of Computer Science, Carnegie-Mellon University.

Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal of Mathematical

Biology, 15(3):267-273.

Oja, E. (1989). Neural networks, principal components, and subspaces. International Journal Of Neural

Systems, 1(1):61-68.

Olson, C. and Freeman, R. (1980). Profile of the sensitive period for monocular deprivation in kittens.

Ezperimental Brain Research, 39:17-21.

Parker, D. B. (1985). Learning-logic. Technical Report TR-47, Center for Computational Research in

Economics and Management Science, Massachusetts Institute of Technology, Cambridge, MA.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San

Mateo, California: Morgan Kaufmann.

Pearlmutter, B. A. and Hinton, G. E. (1986). G-maximization: An unsupervised learning procedure for
discovering regularities. In Denker, J. S., editor, Neural Networks for Computing: American Institute of

Physics Conference Proceedings 151, pages 333-338.

Peterson, C. and Anderson, J. R. (1987). A mean field theory learning algorithm for neural networks.
Complezx Systems, 1:995-1019.

Peterson, C. and Hartman, E. (1989). Explorations of the mean field theory learning algorithm. Neural
Networks.

Peterson, C. and Soderberg, B. (1989). A new method for mapping optimization problems onto neural

networks. International Journal of Neural Systems, 1(3).

Pineda, F. J. (1987). Generalization of back propagation to recurrent and higher order neural networks.

In Proceedings of IEEE Conference on Neural Information Processing Systems, Denver, Colorado. IEEE.

Plumbley, M. and Fallside, F. (1988). An information-theoretic approach to unsupervised connectionist

models. Proceedings of the 1988 Connectionist Models Summer School.

BIBLIOGRAPHY 147

Poggio, T. (1989). A theory of networks for approximation and learning. A.I. Memo No. 1140, C.B.I.P.
Paper No. 31, MIT Artifiacal Intelligence Laboratory, and Center for Biological Information Processing,
Whitaker College.

Press, W., Flannery, B., Teukolsky, S., and Vetterling, W. (1988). Numerical Recipes in C. Cambridge

University Press.

Pylyshyn, Z. (1981). Complexity and the study of artificial and human intelligence. In Haugeland, J.,
editor, Mind Design. Cambridge, Mass.: The MIT Press.

Reiter, H. O., Waitzman, D. M., and Stryker, M. P. (1986). Cortical activity blockade prevents ocular

dominance plasticity in the kitten visual cortex. Ezperimental Brain Research, 65:182-188.

Renals, S. and Rohwer, R. (1989). Phoneme classification experiments using radial basis functions. In the

IEFEE International Conference on Neural Networks.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in

the brain. Psychological Review, 65:386-408.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representations by back-
propagating errors. Nature, 323:533-536.

Rumelhart, D. E. and Zipser, D. (1985). Competitive learning. Cognitive Science, 9:75-112.

Rumelhart, D. E. and Zipser, D. (1986). Feature discovery by competitive learning. In Parallel distributed

processing: Explorations in the microstructure of cognition. Bradford Books, Cambridge, MA.

Sanger, T. (1989a). Optimal unsupervised learning in a single-layer linear feedforward neural network.
Neural Networks, 2:459-473.

Sanger, T. (1989b). An optimality principle for unsupervised learning. In Touretzky, D., editor, Advances

i Neural Information Processing Systems, pages 11-19, Denver 1988. Morgan Kaufmann, San Mateo.

Sanger, T. D. (1989¢). Optimal unsupervised learning in feedforward neural networks. M.Sc. Thesis,
Department of Electrical Engineering and Computer Science, MIT.

Sejnowski, T. and Tesauro, G. (1989). The Hebb rule for synaptic plasticity: implementations and appli-
cations. In Neural Models of Plasticity, pages 94-103. Academic Press, San Diego.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27:379—
423,623-656.

Simard, P. Y., Ottaway, M. B., and Ballard, D. H. (1989). Fixed point analysis for recurrent networks.
In Touretsky, D. S., editor, Advances in Neural Information Processing Systems 1, pages 149-159, San
Matoe, CA. Morgan Kaufmann.

Spinelli, D. and Jensen, F. (1979). Plasticity: The mirror of experience. Science, 203:75-78.

Stryker, M. P. and Harris, W. A. (1986). Binocular impulse blockade prevents the formation of ocular

dominance columns in cat visual cortex. The Journal of Neuroscience, 6(8):2117-2133.

148 BIBLIOGRAPHY

Sur, M., Garraghty, P., and Roe, A. (1988). Experimentally induced visual projections into auditory
thalamus and cortex. Science, 242:1437-1441.

Sutton, R. S. and Barto, A. (1981). Toward a modern theory of adaptive networks: expectation and
prediction. Psychology Review, 88:135-170.

Tesauro, G. (1986). Simple neural models of classical conditioning. Biological Cybernetics, 55:187-200.

Uttley, A. (1970). The informon: A network for adaptive pattern recognition. Journal of Theoretical
Biology, 27:31-67.

von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in striate cortex. Kybernetik,

14:85-100.

Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences. PhD thesis, Harvard University.

Wiesel, T. N. and Hubel, D. H. (1965). Comparison of the effects of unilateral and bilateral eye closure
on cortical unit responses in kittens. Journal of Neurophysiology, 28:1029-1040.

Yuhas, B. P., Goldstein Jr., M. H., Sejnowski, T. J., and Jenkins, R. E. (1990). Neural network models
of sensory integration for improved vowel recognition. In Proceedings of the IEEE, volume 78, pages

1658-1668.

Yuille, A., Kammen, D.,; and Cohen, D. (1989). Quadrature and the development of orientation selective
cortical cells by Hebb rules. Biological Cybernetics, 61:183-194.

Zemel, R. S. and Hinton, G. E. (1991). Discovering viewpoint-invariant relationships that characterize
objects. In Advances In Neural Information Processing Systems 3, pages 299-305. Morgan Kaufmann
Publishers.

Zipser, D. (1986). Programming networks to compute spatial functions. Technical Report ICS Report
8606, UCSD.

