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Abstract
A neural network model of language acquisition is

introduced, motivated by current research in psychology
and linguistics.  It uses both extra-linguistic perceptual
features and symbolic representations of words.  The
network learns to auto-associate these inputs to their
linguistic labels, as well as to predict the next word in the
corpus.  This is interpreted to model both the acquisition
of a lexicon, and the beginnings of syntax or grammar
(word order). Furthermore, the inclusion of the extra-
linguistic perceptual features is argued to be a form of
direct developmental grounding in embodied concepts,
which will allow the later learning of more abstract
concepts to be grounded indirectly in meaning through
relations to the first words.  Through this bootstrapping
process, future versions of the network may be scalable
to large vocabularies, and may bridge the gap between
high-dimensional and embodied theories of meaning.

Introduction
In attempting to model the actual processing and

production of language, in a behavioural fashion, we
consider it very important to take a developmental
approach.  That is, a complete model of language
processing should first become a model of language
acquisition.  Evidence suggests that a model of
language acquisition in children should provide the
foundation necessary to scale up to a model of more
mature language processing, as we shall see.
Furthermore, taking the developmental approach may
offer solutions to the problem of symbol grounding, and
provide a bridge between high-dimensional and
embodied theories of meaning.

Developmental Language Acquisition
If we consider the start of vocabulary acquisition to

be at the age of the child’s first word, typically 8-12
months, then we can ask the following question.  What
cognitive capacities does the child have prior to that
point?  What does language have to build upon?  Some
suggest that there is a considerable amount.

Lakoff and colleagues (Lakoff, 1986; Lakoff &
Johnson, 1999) suggest that the child has reached an
adequate level of concept formation prior to the
development of language.  Few would argue, we
believe, that pre-linguistic children must have some

kind of internal representation of the world.  Children
must have some understanding that a dog barks, is
furry, and can be played with, even if they don’t know
the words ‘dog’, or ‘barks’, or ‘furry’.  Lakoff argues
that children’s sensorimotor experience is continually
building up these embodied, pre-linguistic concepts,
concepts that are very specific and concrete, and that
these concepts enable the child to function in their
particular limited world.

If we assume that this conceptual machinery is
already well established by the time of the first words,
the language learning problem becomes much simpler.
If a child already has an embodied concept for things
like ‘dog’, then when it begins to learn the word for
dog, it is really only attaching a linguistic label to a
category of sensorimotor experience that it has
previously built up.  The learning of words is thus
reduced to the learning of labels for things.  The
attributes of those things and the relationships between
them are all predetermined (at least at this stage) by the
child’s environmental experience.  Of course, nouns fit
into this viewpoint with greater ease than do verbs; it is
harder to point to a verb than a noun.

This is the traditional view in developmental
psycholinguistics according to Gillette et al. (Gillette,
Gleitman, Glietman, & Lederer, 1999).  As they point
out however, this view has limits.  Specifically, they
show evidence that only some words can be derived
solely via extralinguistic context.

It is well known that there is an overwhelming
preponderance of nouns in children’s early speech, not
only in English but in most languages, while adults, of
course, have a much more equal balance. Gillette et al.
offer a new interpretation of this difference, using the
different informational requirements of words that are
necessary to uniquely identify them from extralinguistic
context.  They refer to their hypothesis as an
information-based account, and describe several
experiments that support this account.

Most importantly Gillette et al. provide strong
evidence that learnability is not primarily based on
lexical class.  That is, it is not whether a word is a noun
or a verb that determines if it can be learned solely from
observation. Rather, they demonstrate that the real
distinction is based upon the word’s imageability or
concreteness.



It is obvious that the very first words must be learned
solely by the child attempting to discover contingencies
between sound categories and aspects of the world,
over many different exemplars.  Gillette et al.
demonstrate that the very first words used by mothers
to their children are the most straightforwardly
observable ones, and that as a group, the nouns are in
fact more observable than the verbs.  Furthermore, the
imageability of a word is more important than the
lexical class.  The most observable verbs are learned
before the less observable initial nouns, accounting for
the few rare early verbs in children’s vocabularies.

So, imageability or concreteness is the most
important aspect of the early words, nouns and verbs
alike, and it determines the order in which they tend to
be learned by children. Thus the early words may be
profitably considered different from the later words in
language acquisition; they act as a foundation for the
rest.  However, what of the less imageable words?
How are they learned?

Gillette et al. also find evidence for the successive
importance of noun co-occurrence information and then
argument structure.   That is, for later learning of the
less imageable words (mostly verbs), observing which
previously known nouns co-occur in a sentence with the
yet unknown word label helps greatly to uniquely
identify the concept.  Thus rather than imageability
determining exactly which object we are talking about
over multiple experiences, for many verbs the nouns
involved act to identify it.  Thus if the noun ‘ball’ is
paired with a yet unknown word, the concept
‘throwing’ may be activated for many learners,
allowing them to infer that the unknown word means
‘to throw’ (Gillette et al, 1999).  Argument structure is
yet a further step to verb inference.  Gillette et al. show
that the number and position of nouns in the speech
stream reliably cues which verb concept the unknown
word could be.

At this point in the child’s language learning we have
moved beyond initial lexical learning and are in the
realm of syntax.  The first words (mainly nouns) have
been learned without reference to other words, their
sheer imageability enabling them to be inferred from
the adult to child speech stream and the extralinguistic
evidence.   They are grounded directly in the child’s
embodied reality. The next step involves the use of
these concrete nouns to help infer the less imageable
verb meanings in the speech stream (still well
embodied), and from there the child is no longer
learning words solely from the extralinguistic context.
The lexical structure of utterances now assists the child
as well, and grammar learning begins to emerge.  For
example, the first few verbs learned, when experienced
in adult speech and involving a novel object, will cue
the inference of the new noun label and, depending on
the particular verb, even the type of noun involved.

The circular, bootstrapping process of language
learning is on its way (for further evidence concerning
verbs and nouns respectively, see Goldberg, 1999;
Smith, 1999).  Before long new words will no longer
require explicit extralinguistic context at all.  The
school-age child will begin reading and acquiring most
new words solely by lexical constraints, allowing them
to exhibit the incredible word acquisition rates that have
been reported (e.g. Bates & Goodman, 1999).

Of course, once the learner is acquiring new words
without reference to extra-linguistic context, we are
dealing with abstract symbols again.  Or are we?  The
new words that are acquired through listening to speech
or reading, without perceptual referents, are defined by
their relations to other words in the context.  To the
extent that those other words, those symbols, have been
directly grounded in meaning through associating with
embodied concepts, then the new word becomes
indirectly grounded through its relations to the
grounded words.

The initial, imageable words that were directly
grounded in embodied concepts serve as a foundation
for the later words that will not be.  Meaning can
propagate up through the lexicon.  But how exactly
might this work? Neural network modelling might shed
some light on the process, as we shall see.  However, it
is a complex proposition, and must be approached in
progressive stages of investigation.  The first stage,
presented in the following neural network simulations,
deals with the earliest aspects of language acquisition,
initial lexicon and grammar learning, and with
accompanying direct grounding in perceptual features.
Extension of these first simulations to later, indirect
grounding is also discussed.

Method
The model of language acquisition discussed herein

(see Figure 1) takes as input arbitrary symbols for
words (localist input representations), and learns how
those words can be used in sentences.  This is not a
novel undertaking (see Elman, 1990, 1993; Howell &
Becker, 2000).  However, what is new to this model is
the addition of a second set of inputs, semantic-feature
inputs.  By ‘semantic’, however we actually mean pre-
linguistic semantics or meaning (e.g. sensorimotor
features).  Thus, instead of abstractly manipulating
localist word representations (arbitrary symbols), a
process that has been characterized by McClelland as
“learning a language by listening to the radio” (Elman,
1990), our model attempts to ground the word
representations in reality by associating them with a set
of these semantic features.

Furthermore, the network is not performing only the
prediction task that is argued (Elman, 1990) to lead to
an internalization of basic aspects of grammar,



specifically word-order relationships.  It is also
learning, simultaneously, to memorize its linguistic
inputs, memorize its semantic inputs, and associate the
two together, such that either one alone will elicit the
other.

Figure 1:  Modified SRN architecture, including standard SRN
hidden layer and context layer, standard linguistic prediction layer,
and novel semantic autoencoder and linguistic autoencoder.

 Why construct a neural network model in this way?
First, using a simple recurrent architecture and
prediction task retains the successful grammar learning
capabilities that have been demonstrated by Elman and
colleagues.  Second, adding a semantic layer will
eventually allow for the use of phonemic input
representations. The constancy of the semantic input
(an analogue to focused attention to an object) across
the successively presented phonemes will serve to bind
the phonemes together into a word. The network
discussed in this paper does not deal with phonemic
inputs, however, only whole-word inputs.  Third, the
inclusion of the semantic input layer and a semantic
output layer means that semantic features can be read
off for any given linguistic input, indicating whether the
network has learned the “meaning” of the word, or
whether it is still treating the word only as an arbitrary
symbol.

Finally, the inclusion of both linguistic autoencoding
(word learning) and linguistic prediction (grammar
learning) allows us to explore the dynamics of the
model, and determine if the learning behaviour of the
model maps to the human developmental data.  This
aspect of the model is reported in Howell and Becker
(2001), and will not be considered in detail here.

Model Details
There are two input layers and three output layers.

The semantic output layer is auto-encoding the
semantic input layer.  Both are 68 nodes in size, since

the semantic feature dimensions taken from Hinton &
Shallice (1991) have 68 dimensions.

The linguistic input and the linguistic outputs are of
size 29, since the vocabulary has 29 words.  Both
linguistic outputs are tied to the same set of linguistic
inputs, but where the linguistic autoencoder’s training
signal is the present input, the linguistic predictor’s
training signal is the input at the next time step.

Both the hidden and the context layer are of size 75,
and the hidden-to-context transfer function is a one-to-
one copy with no hysteresis (see Howell & Becker,
2000).  The hidden-to-context connection is not
trainable, but the context-to-hidden feedback
connection is trained via back-propagation exactly as
are both of the input-to-hidden connections.

Training Environment
The network is trained on a corpus of text derived

from a small (390 word) subset of Elman’s original
corpus of two and three word sentences with a 29 word
vocabulary (Elman, 1990).

Input to the semantic input layer was derived from
the above corpus by converting each word in the corpus
to the word’s semantic featural representation, using a
set of features derived from Hinton and Shallice (1991).
This feature set includes only the sensory features and
excludes the semantic-association ones found in the
original. This resulted in a binary distributed
representation for the semantic layer.

The network’s weights were randomly initialized,
and training proceeded as usual for Simple Recurrent
Networks, using the backpropagation algorithm
(Rumelhart, Hinton, and Williams, 1986).  Training
proceeded until near-asymptotic accuracy was
achieved, found empirically to be at 500 epochs.

Error measures and accuracy measures were logged
at each input presentation, but averaged over the 390
patterns to one value per epoch of training.

Results & Discussion
The first finding from the various runs of the network is
that the net does in fact learn.  There had been some
concern that the demands of three different tasks
sharing a single hidden layer might cause significant
interference in the learning tasks.  On the contrary, with
a hidden layer size only slightly larger than the largest
input layer (75 compared to 68 for the semantic input
layer) the net learned all three tasks.  Future work will
address more explicitly the implications of hidden layer
size for this type of network.

Furthermore, the tasks were learned in the expected
order.  That is, judging from the error curves the binary
distributed semantic representations were learned most
quickly (since they provide more information for the
network to learn on) followed by the localist linguistic
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autoencoding and then the localist linguistic prediction.
Prediction, of course, is a more difficult task than
autoencoding or ‘memorization’, just as verb learning is
a more difficult task than noun learning.

Complete lexical-grammatical analysis is presented
in Howell and Becker (2001). For the present purposes,
our analysis is limited to the semantic-linguistic
relationships.  Specifically, does the inclusion of extra-
linguistic semantic features help or hinder the lexical
and grammatical learning?

The experimental network, over 24 simulation runs,
reached a mean peak lexical accuracy of 96.6 percent
correct, while the mean peak prediction (grammatical)
accuracy was 37.33 percent correct. Comparisons with
‘control’ or partial networks lacking the semantic or
lexical autoencoder task indicate that each task is
learned faster and more accurately in the experimental
network than in the control networks.

For control network 1, which included only the
linguistic prediction task (i.e. an original Elman net) the
peak prediction accuracy was lowest, with a mean of
18.5 percent correct, and significantly different from
the experimental network via t-test (n = 10, p<0.0001).

For control network 2, which excluded only the
semantic layers, the peak prediction accuracy, achieved
at epoch 500, was also significantly lower than the
experimental network (m = 28.4, n=10, p <0.0001).

For control network 3, which excluded only the
linguistic autoencoder, the peak prediction accuracy
was still lower than the experimental network but the
difference did not reach significance (m=37.1,n=10, p =
0.137).

Thus, training all three tasks through a single hidden
layer apparently creates synergies that allow each to
proceed faster than it would alone.

Most relevant to our present argument, however, is
the difference between the experimental network and
control network 2.  When the semantic input layer and
output layer are removed, the performance of the
network over the time frame drops significantly.  That
is, grammatical prediction is less accurate (28.4% vs.
37.33%).

Thus the semantic learning, which occurs first, can be
viewed as building up embodied conceptual
representations, or at least sensory representations,
since our current extra-linguistic representations are
mostly perceptual.  With these learned, the lexical
learning and grammatical learning are accelerated, and
the arbitrary word representations become grounded in
reality, or at least in perceptual features.

Is this a high-dimensional or an embodied model of
meaning and language?  We would argue that it is both,
or at least has the potential to become both.  Landauer
and colleagues (e.g. Landauer, Laham & Foltz, 1998)
provide perhaps the best example of a high-dimensional
model of meaning, learning 'meaning' solely from word

to word relations (although see also Burgess & Lund,
2000, for a different method, HAL, using a moving
window over the text).  Landauer’s Latent Semantic
Analysis (LSA) technique takes a large corpus of text,
such as an encyclopedia, and creates a matrix of co-
occurrence statistics for words in relation to the
paragraphs in which they occur.  This yields a very
high-dimensional vector representation for the word,
which is then reduced in dimensionality through
singular-value decomposition until a smaller 'meaning'
vector is obtained for the word, usually about 300
elements long.  These meaning vectors have been used
by Landauer et. al. to demonstrate performance at the
human level in such tasks as multiple choice vocabulary
or domain knowledge tests and emulation of expert
exam grading. These methods (LSA & HAL) have the
advantage of realistically-sized vocabularies, the ability
to handle large corpora, and near-human performance.
What they lack, however, is any incorporation of
syntax, since the words are treated as unordered
collections (a 'bag of words'). More importantly, LSA
or HAL 'meaning' vectors lack any grounding in reality.
Experiments by Glenberg and Robertson (2000) have
shown the LSA method to do poorly at the kinds of
reasoning in novel situations that human semantics
makes trivial, thanks largely to the embodied ‘meaning’
of human semantics.

As mentioned above, we believe that our method
shows the potential to bridge these two forms of
meaning. As Burgess & Lund (2000) discuss, their
HAL method using their smallest text window produces
similar results in word meaning clustering to an Elman
SRN. In addition, they state that the SRN is a little
more sensitive to grammatical nuances.  Since our SRN
architecture is becoming more complex in order to
capture more aspects of grammar, we would expect to
retain the advantage in grammatical relations. Further,
Burgess & Lund point out that the two methods have in
common the fact that words are represented in a high
dimensional distributed meaning space; in our SRN, it
is the hidden layer representation. So, our approach can
be viewed as high-dimensional.  In fact, once we have
switched to using phonemic input representations, as
the present architecture makes possible, we may be able
to approach the effective vocabulary sizes of LSA.  In
addition, however, our feature vectors can be viewed as
embodied, at least to the degree that the feature lists we
use are empirically derived, such as the feature norms
of McRae & colleagues (e.g. McRae, de Sa, &
Seidenberg, 1997) to which we will be switching in
future. This gives our network the important advantage
of direct, embodied, grounding of meaning.

So, our network learns to associate arbitrary symbols
with meaningful embodied features, and combines the
high-dimensional and embodied approaches to
meaning.  That may be interesting in itself, but the real



value of our approach should be more evident as this
architecture is scaled up.  After the initial words are
trained along with their feature vectors, generating an
initial lexicon of directly grounded words, we intend
that later words will receive less and less in the way of
feature vectors; they will bootstrap themselves into
meaning based on relations to earlier words.  This will
map to the way humans begin to experience words with
less and less frequent perceptual context, until they are
inferring word meanings solely from textual context.  In
our network, this corresponds to later words being
introduced into the training corpus without feature
representations.  To the degree that our approach is
successful, new words should begin to demonstrate at
semantic output the same sort of features that similar
words would.

Thus if the network’s initial lexicon includes ‘dog’,
and the sensorimotor features for dog, then when the
new word ‘wolf’ is introduced, along with new corpus
text that discusses wolves, the similarity of wolf to dog
should become evident.  After all, dogs and wolves are
perceptually similar, may occur in many of the same
kinds of real world situations and hence sentences
(chasing things, eating things, running, howling, etc.).
Thus we expect that over time the symbol ‘wolf’ will
come to produce much the same perceptual output as
‘dog’ does, without being explicitly trained to do so.

Results from the simulations reported here are
suggestive of this.  We are already working on more
realistically sized vocabularies and corpora to test this
theory more rigorously.
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