Instructions and Tips

- Assume the speed of sound in air (c_{air}) is = 340 m·s⁻¹.
- Assume the speed of sound in water (c_{water}) is = 4·c_{air}.
- · A calculator is not necessary to answer any of these questions.
- 1. Why does atmospheric pressure decrease with elevation?
- 2. Contrast transverse (shear) wave motion with longitudinal wave motion.
- 3. What are the units of measure for Force, Work, Frequency, Wavelength, Period, and Pressure?
- Name three physical attributes of sound that are encoded by the peripheral auditory system.
- 5. Name the physical attributes of sound that are required to completely describe a sine wave.
- 6. A sine wave has a peak-to-peak amplitude (A_{peak-to-peak}) of 20 Volts. What is its peak (A_{peak}) and rms amplitude (A_{rms})?
- 7. A sine wave has a rms amplitude (A_{rms}) of 10 Volts. What is its peak amplitude (A_{peak})?
- 8. An object exhibiting uniform circular motion has an angular velocity of 628.318 radians·s⁻¹. What is its frequency of oscillation?

Problem Set #1 page 1 of 2

9.	A frequency of 4 Hz corresponds to what angular velocity?
10.	A phase angle of 90° corresponds to how many radians?
11.	How many millimeters will a sound with a frequency of 1000 Hz travel in air in 2 ms?
12.	What is the wavelength of a 340 Hz tone propagating in air?
13.	If the period of a sinusoid is 10 ms, what is its frequency?
14.	If the speed of sound in water (c_{water}) is 4 times faster than in air (c_{air}), then the wavelength of a sound with a frequency of 1000 Hz propagating in water is equivalent to the wavelength of what sound frequency propagating in air?
15.	An object exhibiting uniform circular motion has a starting phase angle of 90° and a frequency of oscillation of 3 Hz. What is its ending phase angle after 0.5 s of counterclockwise rotation?
16.	Draw a sinusoidal instantaneous pressure function, P(t), where the frequency is 1000 Hz, the starting phase is 0°, and the rms pressure is 1.414 Pascals (Pa). Label the abscissa and ordinate correctly.

Problem Set #1 page 2 of 2