Instructions and Tips

- The speed of sound in air (c_{air}) is = 340 m·s⁻¹; the speed of sound in water (c_{water}) is = 4· c_{air} .
- Remember that $log_{10}(2) = 0.3$.
- A calculator is not necessary to answer any of these questions.

1.	Write the equation for a line with a slope of 1, 3 and 5, each having a y-intercept equal to its slope. (a) Line 1:
	(b) Line 2:
	(c) Line 2:
2.	Draw the <i>unit circle</i> and label points at every $\pi/4$ radians starting from $x=1$, $y=0$. What angle (θ) in degrees corresponds to each $\pi/4$ radian point starting from $x=1$, $y=0$?
3.	(a) Write the equation that describes the instantaneous pressure, $P(t)$, of a sine wave with a peak amplitude of 4 Pascals (Pa), a period (T) of 1 ms, and a starting phase angle (θ) of 3.14 radians (rad).
	(b) Write the equation for the instantaneous pressure of the above sound if the frequency (f) is doubled and the starting phase angle (θ) is shifted by -90°.

Problem Set #2 page 1 of 3

(c) Write the equation that describes the instantaneous pressure, P(t), of a sine wave with a peak

amplitude of 0.01 Pa, a frequency (f) of 5000 Hz, and a starting phase angle (θ) of 270°.

- 4. What is the period (T) of a sine wave with a frequency (f) of:
 - (a) 10 Hz?

(e) 1000 Hz?

(b) 100 Hz?

(f) 2 kHz?

(c) 333 Hz?

(g) 5 kHz?

(d) 500 Hz?

- (h) 10 kHz?
- 5. What is the frequency (f) of a sine wave with a period (T) of:
 - (a) 1000 ms?

(d) 0.333 ms?

(b) 200 ms?

(e) 0.1 ms?

(c) 20 ms?

- (f) 0.01 ms?
- (g) If the signals in Q#5 were sounds, which one(s) could a human NOT hear?
- 6. Draw the sine waves described by the following equations. Be certain to label both axes.
 - (a) $D(t) = 4 \cdot \sin(2\pi \cdot 10 \cdot t)$
 - (b) $D(t) = 4 \cdot \sin(2\pi \cdot 10 \cdot t \pi)$

- (c) What would be heard if the sine waves in 6(a) and 6(b) were played simultaneously from a speaker?
- 7. Provide the answer to the following logarithmic expressions.
 - (a) $\log_{10}(10) =$
 - (b) $\log_{10}(100) =$
 - (c) $\log_{10}(20) =$
 - (d) $\log_{10}(10^5) =$
 - (e) $\log_{10}(10^6/2) =$
 - (f) $\log_{10}(10^7/10) =$
 - (g) $\log_{10}(2) =$

- (h) $\log_{10}(0.5) =$
- (i) $log_{10}(0.05) =$

Problem Set #2 page 3 of 3