Analyzing Neural Time-series Data
PSYCH 711/712 Course Outline
Winter Term, 2018

Co-Instructor: Eugenie Roudaia
Office: PC- 428; Email: roudaia@mcmaster.ca; Office hour: by appointment
Co-Instructor: Andrew Chang
Office: PC- 323; Email: changa5@mcmaster.ca; Office hour: by appointment

Meeting times:
Class times: Tuesdays, 9:30 - 11:30, every other week for 6 meetings
Journal club: Thursdays, time TBA, every other week for 6 meetings

Location: PC 204 (*except first meeting)

Overview: The goal of this course is to introduce students to basic and some more advanced approaches of EEG/MEG signal processing and data analysis methods. The course is designed to accommodate students with little or no previous experience in this area. There will be two sections of this course: lectures and journal club meetings. In the lectures (2-hour meeting), the instructors will introduce the basic concepts of EEG signal processing and demonstrate practical implementations using MATLAB. Homework assignments/evaluations will involve a combination of theory-based questions and solving exercises in MATLAB based on the code in Mike X Cohen’s book. In the journal club meetings (1-hour meeting), students and other interested members will meet to discuss current advances in EEG signal processing or data analysis techniques. Students registered in this course are required to attend at least six journal club meetings, to actively contribute to the discussion, and to either present a paper or write an essay on one of the papers discussed at the journal club.

Software: This course will use MATLAB during class and for assignments. This course assumes that students are familiar with the basic aspects of MATLAB programming (use of vectors, arrays, functions, for loops). Students can choose to use their own MATLAB version on their laptops, or to use the MATLAB installed on the computers in the computer cluster. Those who need to use MATLAB in the computer cluster are asked to notify the instructors ASAP to ensure that we have a sufficient number of licenses available.

Required textbooks:

McMaster Library has these e-books freely accessible online with McMaster IP.
Online materials:
Students are encouraged to watch Mike X Cohen’s excellent lectures based on his book, available at the website: http://mikexcohen.com/lectures.html
Students are also encouraged to consult this online discussion forum of his code: https://groups.google.com/forum/#!forum/analyzingneuraltimeseriesdata
Those interested in Python, Lyndon Duong has shared his translation of the Matlab code to Python (which we will not be covering in class): https://github.com/lyndond/Analyzing_Neural_Time_Series

Class schedule:

Week 0: Thursday, January 11, 11:30am. PC 316. Organisational meeting.
Week 1: Tuesday, January 16, 9:30 - 11:30. PC 204. Theories of EEG
 Required reading: Chapter 2-6 of Cohen’s book
Week 2: January 30, 9:30 - 11:30. PC 204. Preprocessing, Filtering, Artifact, ERP
 Required reading: Chapters 7-9 of Cohen’s book and Chapter 5 of Luck’s book
 Assignment #1 due.
Week 3: Feb 13, 9:30 - 11:30. PC 204. Frequency and Time-frequency analysis
 Required reading: Chapters (10, 11), 12, 13, 15, 16 of Cohen’s book
 Assignment #2 due.
Week 4: Feb 27, 9:30 - 11:30. PC 204. Filtering, Phase and Normalization
 Lecture: Chapters 18, 19, 21 (14, 20) of Cohen’s book
 Assignment #3 due.
Week 5: Mar 13, 9:30 - 11:30. PC 204. ICA, Localization, Connectivity
 Lecture: Chapters 22, 24, 25 of Cohen’s book
 Assignment #4 due.
Week 6: Mar 27, 9:30 - 11:30. PC 204. Statistics and overview
 Lecture: Chapters 33, 34 (32, 35) of Cohen’s book
 Assignment #5 due.

The EEG Methods Journal club will meet on the same week as class. Readings and topics are to be announced.

Changes in schedule: The instructors reserve the right to modify topics to be covered during the term depending on the pace of the class. Students are asked to check their McMaster email during the term and to note any changes.
Assessment:

5 assignments worth 10% each. Assignments will be posted the day of class and will be due at the start of next class. Late submissions may be penalized with 2% per day.

Journal club attendance and participation 20%

Presenting a paper in the journal club or written essay summarizing and critiquing one of the articles discussed in the journal club (Max 1000 words, excluding references) 30%

Academic Integrity: Students are responsible for demonstrating behaviour honest and ethical behaviour in their academic work, which includes submitting one’s own work in coursework assignments. For more information on McMaster’s policy on academic integrity, please visit: http://mcmaster.ca/academicintegrity