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Abstract 

A major issue in evaluating speech enhancement and hearing 
compensation algorithms is to come up with a suitable metric that 
predicts intelligibility as judged by a human listener. Previous 
methods such as the widely used Speech Transmission Index (STI) 
fail to account for masking effects that arise from the highly 
nonlinear cochlear transfer function. We therefore propose a 
Neural Articulation Index (NAI) that estimates speech 
intelligibility from the instantaneous neural spike rate over time, 
produced when a signal is processed by an auditory neural model. 
By using a well developed model of the auditory periphery and 
detection theory we show that human perceptual discrimination 
closely matches the modeled distortion in the instantaneous spike 
rates of the auditory nerve. In highly rippled frequency transfer 
conditions the NAI’s prediction error is 8% versus the STI’s 
prediction error of 10.8%. 

1  Introduction 

A wide range of intelligibility measures in current use rest on the assumption that 
intelligibility of a speech signal is based upon the sum of contributions of 
intelligibility within individual frequency bands, as first proposed by French and 
Steinberg [1]. This basic method applies a function of the Signal-to-Noise Ratio 
(SNR) in a set of bands, then averages across these bands to come up with a 
prediction of intelligibility. French and Steinberg’s original Articulation Index (AI) 
is based on 20 equally contributing bands, and produces an intelligibility score 
between zero and one: 
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where TIi (Transmission Index i) is the normalized intelligibility in the ith band. The 
TI per band is a function of the signal to noise ratio or: 
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for SNRs between –12 dB and 18 dB. A SNR of greater than 18 dB means that the 
band has perfect intelligibility and TI equals 1, while an SNR under –12 dB means 
that a band is not contributing at all, and the TI of that band equals 0. The overall 
intelligibility is then a function of the AI, but this function changes depending on 
the semantic context of the signal. 

Kryter validated many of the underlying AI principles [2]. Kryter also presented the 
mechanics for calculating the AI for different number of bands - 5,6,15 or the 
original 20 - as well as important correction factors [3]. Some of the most important 
correction factors account for the effects of modulated noise, peak clipping, and 
reverberation. Even with the application of various correction factors, the AI does 
not predict intelligibility in the presence of some time-domain distortions.  
Consequently, the Modulation Transfer Function (MTF) has been utilized to 
measure the loss of intelligibility due to echoes and reverberation [4]. Steeneken 
and Houtgast later extended this approach to include nonlinear distortions, giving a 
new name to the predictor: the Speech Transmission Index (STI) [5]. These metrics 
proved more valid for a larger range of environments and interferences. 

The STI test signal is a long-term average speech spectrum, gaussian random signal, 
amplitude modulated by a 0.63 Hz to 12.5 Hz tone. Acoustic components within 
different frequency bands are switched on and off over the testing sequence to come 
up with an intelligibility score between zero and one. Interband intermodulation 
sources can be discerned, as long as the product does not fall into the testing band. 
Therefore, the STI allows for standard AI-frequency band weighted SNR effects, 
MTF-time domain effects, and some limited measurements of nonlinearities. The 
STI shows a high correlation with empirical tests, and has been codified as an ANSI 
standard [6]. For general acoustics it is very good. However, the STI does not 
accurately model intraband masker non-linearities, phase distortions or the 
underlying auditory mechanisms (outside of independent frequency bands) 

We therefore sought to extend the AI/STI concepts to predict intelligibility, on the 
assumption that the closest physical variable we have to the perceptual variable of 
intelligibility is the auditory nerve response. Using a spiking model of the auditory 
periphery [7] we form the Neuronal Articulation Index (NAI) by describing 
distortions in the spike trains of different frequency bands. The spiking over time of 
an auditory nerve fiber for an undistorted speech signal (control case) is compared 
to the neural spiking over time for the same signal after undergoing some distortion 
(test case). The difference in the estimated instantaneous discharge rate for the two 
cases is used to calculate a neural equivalent to the TI, the Neural Distortion (ND), 
for each frequency band. Then the NAI is calculated with a weighted average of 
NDs at different Best Frequencies (BFs). In general detection theory terms, the 
control neuronal response sets some locus in a high dimensional space, then the 
distorted neuronal response will project near that locus if it is perceptually 
equivalent, or very far away if it is not. Thus, the distance between the control 
neuronal response and the distorted neuronal response is a function of intelligibility. 
Due to the limitations of the STI mentioned above it is predicted that a measure of 
the neural coding error will be a better predictor than SNR for human intelligibility 
word-scores. Our method also has the potential to shed light on the underlying 
neurobiological mechanisms. 
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2  Method 

2 .1  M o del  

The auditory periphery model used throughout (and hereafter referred to as the 
Auditory Model) is from [7]. The system is shown in Figure 1. 

 

Figure 1 Block diagram of the computational model of the auditory periphery 
from the middle ear to the Auditory Nerve. Reprinted from Fig. 1 of [7] with 
permission from the Acoustical Society of America © (2003). 

The auditory periphery model comprises several sections, each providing a 
phenomenological description of a different part of the cat auditory periphery 
function. 

The first section models middle ear filtering. The second section, labeled the 
“control path,” captures the Outer Hair Cells (OHC) modulatory function, and 
includes a wideband, nonlinear, time varying, band-pass filter followed by an OHC 
nonlinearity (NL) and low-pass (LP) filter. This section controls the time-varying, 
nonlinear behavior of the narrowband signal-path basilar membrane (BM) filter. The 
control-path filter has a wider bandwidth than the signal-path filter to account for 
wideband nonlinear phenomena such as two-tone rate suppression. 

The third section of the model, labeled the “signal path”, describes the filter 
properties and traveling wave delay of the BM (time-varying, narrowband filter); 
the nonlinear transduction and low-pass filtering of the Inner Hair Cell (IHC NL and 
LP); spontaneous and driven activity and adaptation in synaptic transmission 
(synapse model); and spike generation and refractoriness in the auditory nerve 
(AN).  In this model, CIHC and COHC are scaling constants that control IHC and OHC 
status, respectively.  

The parameters of the synapse section of the model are set to produce adaptation 
and discharge-rate versus level behavior appropriate for a high-spontaneous-



 

rate/low-threshold auditory nerve fiber.  In order to avoid having to generate many 
spike trains to obtain a reliable estimate of the instantaneous discharge rate over 
time, we instead use the synaptic release rate as an approximation of the discharge 
rate, ignoring the effects of neural refractoriness. 

2 .2  Neura l  ar t i cu la t ion  index  

These results emulate most of the simulations described in Chapter 2 of Steeneken’s 
thesis [8], as it describes the full development of an STI metric from inception to 
end. For those interested, the following simulations try to map most of the second 
chapter, but instead of basing the distortion metric on a SNR calculation, we use the 
neural distortion. 

There are two sets of experiments. The first, in section 3.1, deals with applying a 
frequency weighting structure to combine the band distortion values, while section 
3.2 introduces redundancy factors also. The bands, chosen to match [8], are octave 
bands centered at [125, 250, 500, 1000, 2000, 4000, 8000] Hz. Only seven bands are 
used here. The Neural AI (NAI) for this is: 

,... 772211 NTINTINTINAI ⋅++⋅+⋅= ααα  
where αi is the ith bands contribution and NTIi is the Neural Transmission Index in 
the ith band. Here all the αs sum to one, so each α factor can be thought of as the 
percentage contribution of a band to intelligibility. Since NTI is between [0,1], it 
can also be thought of as the percentage of acoustic features that are intelligible in a 
particular band. The ND per band is the projection of the distorted (Test) 
instantaneous spike rate against the clean (Control) instantaneous spike rate. 
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where Control and Test are vectors of the instantaneous spike rate over time, 
sampled at 22050 Hz. This type of error metric can only deal with steady state 
channel distortions, such as the ones used in [8]. ND was then linearly fit to 
resemble the TI equation 1-2, after normalizing each of the seven bands to have zero 
means and unit standard deviations across each of the seven bands. The NTI in the 
ith band was calculated as 
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NTIi is then thresholded to be no less then 0 and no greater then 1, following the TI 
thresholding. In equation (5) the factors, m = 2.5, b = -1, were the best linear fit to 
produce NTIi’s in bands with SNR greater then 15 dB of 1, bands with 7.5 dB SNR 
produce NTIi’s of 0.75, and bands with 0 dB SNR produced NTIi’s of 0.5. This 
closely followed the procedure outlined in section 2.3.3 of [8]. As the TI is a best 
linear fit of SNR to intelligibility, the NTI is a best linear fit of neural distortion to 
intelligibility. 

The input stimuli were taken from a Dutch corpus [9], and consisted of 10 
Consonant-Vowel-Consonant (CVC) words, each spoken by four males and four 
females and sampled at 44100 Hz. The Steeneken study had many more, but the 
exact corpus could not be found. 80 total words is enough to produce meaningful 
frequency weighting factors. There were 26 frequency channel distortion conditions 
used for male speakers, 17 for female and three SNRs (+15 dB, +7.5 dB and 0 dB). 
The channel conditions were split into four groups given in Tables 1 through 4 for 
males, since females have negligible signal in the 125 Hz band, they used a subset, 
marked with an asterisk in Table 1 through Table 4. 
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Table 1: Rippled Envelope 

 OCTAVE-BAND CENTRE FREQUENCY 
ID # 125 250 500 1K 2K 4K 8K 
1* 1 1 1 1 0 0 0 
2* 0 0 0 0 1 1 1 
3* 1 1 0 0 0 1 1 
4* 0 0 1 1 1 0 0 
5* 1 1 0 0 1 1 0 
6* 0 0 1 1 0 0 1 
7* 1 0 1 0 1 0 1 
8* 0 1 0 1 0 1 0 

Table 2: Adjacent Triplets 

 OCTAVE-BAND CENTRE FREQUENCY 
ID # 125 250 500 1K 2K 4K 8K 
9 1 1 1 0 0 0 0 
10 0 1 1 1 0 0 0 
11* 0 0 0 1 1 1 0 

Table 3: Isolated Triplets 

 OCTAVE-BAND CENTRE FREQUENCY 
ID # 125 250 500 1K 2K 4K 8K 
12 1 0 1 0 1 0 0 
13 1 0 1 0 0 1 0 
14 1 0 0 1 0 1 0 
15* 0 1 0 1 0 0 1 
16* 0 1 0 0 1 0 1 
17 0 0 1 0 1 0 1 

Table 4: Contiguous Bands 

 OCTAVE-BAND CENTRE FREQUENCY 

ID # 125 250 500 1K 2K 4K 8K 

18* 0 1 1 1 1 0 0 
19* 0 0 1 1 1 1 0 
20* 0 0 0 1 1 1 1 
21 1 1 1 1 1 0 0 
22* 0 1 1 1 1 1 0 
23* 0 0 1 1 1 1 1 
24 1 1 1 1 1 1 0 
25 0 1 1 1 1 1 1 
26* 1 1 1 1 1 1 1 

In the above tables a one represents a passband and a zero a stop band. A 1353 tap 
FIR filter was designed for each envelope condition. The female envelopes are a 
subset of these because they have no appreciable speech energy in the 125 Hz 
octave band. Using the 40 male utterances and 40 female utterances under distortion 
and calculating the NAI following equation (3) produces only a value between [0,1]. 
To produce a word-score intelligibility prediction between zero and 100 percent the 
NAI value was fit to a third order polynomial that produced the lowest standard 
deviation of error from empirical data. While Fletcher and Galt [10] state that the 
relation between AI and intelligibility is exponential, [8] fits with a third order 
polynomial, and we have chosen to compare to [8]. The empirical word-score 
intelligibility was from [8]. 



 

3  Results  

3 .1  Deter mi n ing  f reque nc y  w e ight ing  s t ruc ture  

For the first tests, the optimal frequency weights (the values of αi from equation 3) 
were designed through minimizing the difference between the predicted 
intelligibility and the empirical intelligibility. At each iteration one of the values 
was dithered up or down, and then the sum of the αi was normalized to one. This is 
very similar to [5] whose final standard deviation of prediction error for males was 
12.8%, and 8.8% for females. The NAI’s final standard deviation of prediction error 
for males was 8.9%, and 7.1% for females. 

 

Figure 2 Relation between NAI and empirical word-score intelligibility for male 
(left) and female (right) speech with bandpass limiting and noise. The vertical 
spread from the best fitting polynomial for males has a s.d. = 8.9% versus the 
STI [5] s.d. = 12.8%, for females the fit has a s.d. = 7.1% versus the STI [5] s.d. 
= 8.8% 

The frequency weighting factors are similar for the NAI and the STI. The STI 
weighting factors from [8], which produced the optimal prediction of empirical data 
(male s.d. = 6.8%, female s.d. = 6.0%) and the NAI are plotted in Figure 3. 

 

Figure 3 Frequency weighting factors for the optimal predictor of male and 
female intelligibility calculated with the NAI and published by Steeneken [8]. 

As one can see, the low frequency information is tremendously suppressed in the 
NAI, while the high frequencies are emphasized. This may be an effect of the 
stimuli corpus. The corpus has a high percentage of stops and fricatives in the initial 
and final consonant positions. Since these have a comparatively large amount of 
high frequency signal they may explain this discrepancy at the cost of the low 
frequency weights. [8] does state that these frequency weights are dependant upon 
the conditions used for evaluation. 
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3 .2  Deter mi n ing  f reque nc y  w e ig ht ing  w i th  redunda ncy  fa c to rs  

In experiment two, rather then using equation (3) that assumes each frequency band 
contributes independently, we introduce redundancy factors. There is correlation 
between the different frequency bands of speech [11], which tends to make the STI 
over-predict intelligibility. The redundancy factors attempt to remove correlate 
signals between bands. Equation (3) then becomes: 

,... 773212221111 NTINTINTINTINTINTINTINAI r ⋅++⋅−⋅+⋅−⋅= αβαβα  

where the r subscript denotes a redundant NAI and β is the correlation factor. Only 
adjacent bands are used here to reduce complexity. We replicated Section 3.1 except 
using equation 6. The same testing, and adaptation strategy from Section 3.1 was 
used to find the optimal αs and βs. 

 
Figure 4 Relation between NAIr and empirical word-score intelligibility for 
male speech (right) and female speech (left) with bandpass limiting and noise 
with Redundancy Factors. The vertical spread from the best fitting polynomial 
for males has a s.d. = 6.9% versus the STIr [8] s.d. = 4.7%, for females the best 
fitting polynomial has a s.d. = 5.4% versus the STIr [8] s.d. = 4.0%. 

The frequency weighting and redundancy factors given as optimal in Steeneken, 
versus calculated through optimizing the NAIr are given in Figure 5. 

 
Figure 5 Frequency and redundancy factors for the optimal predictor of male 
and female intelligibility calculated with the NAIr and published in [8]. 

The frequency weights for the NAIr and STIr are more similar than in Section 3.1. 
The redundancy factors are very different though. The NAI redundancy factors 
show no real frequency dependence unlike the convex STI redundancy factors. This 
may be due to differences in optimization that were not clear in [8]. 

Table 5: Standard Deviation of Prediction Error 

 MALE 
EQ. 3 

FEMALE 
EQ. 3 

MALE 
EQ. 6 

FEMALE 
EQ. 6 

NAI 8.9 % 7.1 % 6.9 % 5.4 % 
STI [5] 12.8 % 8.8 %   
STI [8] 6.8 % 6.0 % 4.7 % 4.0 % 



 

The mean difference in error between the STIr, as given in [8], and the NAIr is 
1.7%. This difference may be from the limited CVC word choice. It is well within 
the range of normal speaker variation, about 2%, so we believe that the NAI and 
NAIr are comparable to the STI and STIr in predicting speech intelligibility. 

4  Conclusions 
These results are very encouraging. The NAI provides a modest improvement over 
STI in predicting intelligibility. We do not propose this as a replacement for the STI 
for general acoustics since the NAI is much more computationally complex then the 
STI. The NAI’s end applications are in predicting hearing impairment intelligibility 
and using statistical decision theory to describe the auditory systems feature 
extractors - tasks which the STI cannot do, but are available to the NAI. 

While the AI and STI can take into account threshold shifts in a hearing impaired 
individual, neither can account for sensorineural, suprathreshold degradations [12]. 
The accuracy of this model, based on cat anatomy and physiology, in predicting 
human speech intelligibility provides strong validation of attempts to design hearing 
aid amplification schemes based on physiological data and models [13]. By 
quantifying the hearing impairment in an intelligibility metric by way of a damaged 
auditory model one can provide a more accurate assessment of the distortion, probe 
how the distortion is changing the neuronal response and provide feedback for 
preprocessing via a hearing aid before the impairment. The NAI may also give 
insight into how the ear codes stimuli for the very robust, human  auditory system. 
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