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Restricted Boltzmann Machine models of hippocampal coding and neurogenesis  

Rory Finnegan, Mark Shaw and Suzanna Becker 

Abstract: The hippocampus has been traditionally viewed as a memorization device, creating 

orthogonalized representations (pattern separation) in the dentate gyrus, and performing 

associative retrieval (pattern completion) in the CA3. Moreover, neurogenesis in the dentate gyrus 

is widely assumed to increase pattern separation. Evidence that neurogenesis is important for 

behavioural discrimination has been erroneously taken as supporting the pattern separation 

assumption. Instead, we propose that the hippocampus forms a probabilistic, generative model of 

its input, using forward and feedback connections for encoding versus reconstruction. Using the 

Restricted Boltzmann Machine, we model the developmental trajectory of adult-generated neurons 

from hyperactive, hyperplastic, sparsely connected young neurons to less plastic, more densely 

connected mature neurons under tight inhibitory control. Models with neurogenesis are more 

robust against interference, while paradoxically generating more overlapping representations (less 

pattern separation). When applied to more realistic grid cell and boundary vector cell inputs, the 

model learns place cell representations. Finally, we simulate a full multi-layer hippocampal model 

with neurogenesis, and discuss how it can learn representations of sequential, complex events.  

 

Keywords: hippocampus, neurogenesis, dentate granule cells, recall, neural networks, retroactive 

interference, proactive interference, Restricted Boltzmann Machine, grid cells, boundary vector 

cells 

  



 Introduction 

The hippocampus has intrigued researchers for many decades because of its vital role in 

the formation and retrieval of complex associative memories. Inspired by Marr’s simple memory 

theory of neural coding in the archicortex,1 a computational framework that included an initial 

coding stage followed by an associative retrieval stage, subsequent computational modellers 

have further fleshed out the contributions of different hippocampal sub-regions to these memory 

functions.2–7 Under this widely accepted, traditional view of the hippocampus, the initial coding 

stage takes place in the dentate gyrus (DG), followed by an associative retrieval stage in the CA3 

and CA1 regions. In these models, the DG serves to generate less overlapping, more 

orthogonalized representations (pattern separation) through sparse coding, while the CA3, with 

its dense recurrent collateral connections, performs cued retrieval (pattern completion). The 

associative pathway from CA3 to CA1 in some models further contributes to pattern completion. 

The basic circuit of this traditional model is illustrated in Figure 1. 

******************************* 

INSERT FIGURE 1 ABOUT HERE 

******************************* 

The traditional view of the hippocampus as a memorization and cued retrieval device, as 

described above, has garnered considerable empirical support. Direct evidence from unit 

recordings of ongoing neuronal activity and immediate early gene (IEG) markers of recent 

neuronal activity support a role for the DG in sparse coding and pattern separation.8–12 Similarly, 

there is direct evidence of a role for the CA3 in cued recall and pattern completion.13–15 

However, more recent data suggest that this traditional view is too simplistic. Firstly, a large 

body of evidence suggests that the hippocampal “memory system” is as much involved in 



imagining and predicting the future as it is in remembering the past. For example, patients with 

medial temporal lobe (MTL) damage that includes the hippocampus not only show episodic and 

contextual memory deficits; they also have great difficulty imagining future scenarios.16–19 

Events that they attempt to imagine, like the past events that they attempt to remember, are 

notably lacking in episodic detail. Secondly, recent data call into question whether the MTL 

memory system is merely retrieving and remembering information, or may also be involved in 

the ongoing classification and perception of stimuli. A prime example is the coding of space. In 

both rodents and humans, hippocampal “place cells” reflect the animal’s current location in 

space and are critical for ongoing navigation.20,21 The importance of the MTL for representing 

perceptual information also extends to non-spatial perceptual judgements. A growing body of 

evidence points to a central role for the hippocampus in representing higher order perceptual 

features and making complex perceptual decisions (for a review, see Lee et al22), for example, 

discriminating faces and objects from novel stimuli, even when those faces and objects were not 

subsequently well remembered.23 

The fact that the hippocampal system seems to be involved in perception, imagery and 

predicting the future is inconsistent with the notion that its chief function is exact memorization 

for subsequent cued retrieval. Instead, the traditional view of the hippocampus (Figure 1) must 

be re-thought. An updated view is that the hippocampus operates integrally with the neocortex to 

encode, represent, perceive and predict information. As a first step toward modelling the role of 

the hippocampus within this broader view, Kali and Dayan24 proposed a hierarchical, 

probabilistic model of the cortex, with the hippocampus situated at the top of the hierarchy. The 

hippocampus and neocortex jointly form a multilayer model of the sensory input. Kali and 

Dayan’s model provides a compelling alternative account of observations such as “sequence 



replay”, the re-activation of recently experienced sequences of place representations during 

sleep.25,26 The standard view is that hippocampal sequence replay serves to consolidate memories 

in the neocortex, making them independent of the hippocampus. In contrast, Kali and Dayan 

propose that event replay serves to maintain the correspondence between neocortical and 

hippocampal representations, as both may be evolving over time. This view fits within the 

broader framework of the brain as a probabilistic, generative, hierarchical model that includes 

the hippocampus. 

Another key property of the hippocampus that is missing from the traditional model is the 

occurrence of ongoing neurogenesis throughout the lifespan. Adult neurogenesis in the 

hippocampus has profound implications for neural coding. Mature dentate granule cells (DGCs) 

fire very sparsely, as they are under tight control by inhibitory interneurons, and might 

reasonably be assumed to contribute to pattern separation in the DG. On the other hand, the 

newly generated neurons have very different properties. By about 3-4 weeks of age they have 

matured to the point that they are able to fire action potentials and contribute to neural coding, 

and yet at this stage they are much more plastic27,28 and more highly excitable29,30 than mature 

DGCs. Over the next several weeks, the young neurons mature and become progressively more 

like adult DGCs. How would this varying population of DGCs affect learning and memory? In 

this chapter, we consider how the idea of a probabilistic, generative model of encoding and 

prediction could be implemented within the hippocampal circuit using the Restricted Boltzmann 

Machine (RBM)31 to simulate the learning process. Further, we consider the contribution of 

neurogenesis to coding in this model. We then consider how the model could be extended to 

include more realistic inputs in the form of grid cells and boundary vector cells in the entorhinal 

cortex and subiculum / pre-subiculum. Simulated models with these more naturalistic inputs lead 



to the emergence of place cells when applying the RBM learning equations. Finally, we present 

new simulations of a more complete hippocampal model that includes multiple stacked RBMs, 

and we outline how this full hippocampal model should account for a wide range of 

neurobiological data including sequence coding and replay.  

 

A RBM Model of Learning and Neurogenesis in the DG 

The RBM is a type of artificial neural network which learns a set of weights so as to form 

a probabilistic, generative model of a dataset.31 The network consists of a set of reciprocally 

connected stochastic units, partitioned into visible and hidden layers of units, with no within 

layer connections. The architecture of a one-layer RBM can be seen in the middle panel of 

Figure 2.  These bidirectional connections between the visible and hidden units form a bipartite 

graph. Weights in the network are updated based on the difference between the data-driven 

representations (and the probability distribution of the dataset) and the model’s expectation-

driven representations. While exact calculation of these expectations is intractable, they can be 

approximated through brief Gibbs sampling.31 We used 1-step Gibbs sampling, and the 

contrastive divergence (CD) learning rule31 in our RBM based model: 

 

∆ ௜ܹ௝ ൌ 	߳ ቀ൫ݒ௜ ௝݄൯ௗ௔௧௔ െ	൫ݒ௜ ௝݄൯௥௘௖௢௡ቁ ሺ1ሻ 

 
where ∆ ௜ܹ௝is the update to the weight ௜ܹ௝between the ݅௧௛visible unit and ݆௧௛ hidden unit, 

calculated by taking the difference between the data-driven and reconstructed Hebbian terms 

(product of ith visible state and jth hidden state), multiplied  by a learning rate ߳. The input 

vector ݒௗ௔௧௔  is the data-driven visible state vector and  ݄ௗ௔௧௔is the data-driven hidden state 

generated by clamping the visible units’ states to ݒௗ௔௧௔ and sampling the hidden units’ states 



according to equation 5. Thus, ൫ݒ௜ ௝݄൯ௗ௔௧௔ represents the product of the ݅௧௛visible and ݆௧௛ hidden 

activations in the data-driven phase. ݒ௥௘௖௢௡ is a reconstruction of the input vector generated by 

clamping the states of the hidden units to the data-driven pattern ݄ௗ௔௧௔ and sampling the states of 

the visible units according to equation 4. ݄௥௘௖௢௡ is then created in the same way as ݄ௗ௔௧௔, but by 

clamping the visible units’ states to ݒ௥௘௖௢௡. 

 

∆ܽ௜ ൌ 	߳൫ݒ௜೏ೌ೟ೌ െ	ݒ௜ೝ೐೎೚೙൯ ሺ2ሻ 

 

∆ ௝ܾ ൌ 	߳൫ ௝݄೏ೌ೟ೌ െ	 ௝݄ೝ೐೎೚೙൯ ሺ3ሻ 

 

 Units’ binary states are updated probabilistically according to equations 4 and 5 below:  

 

௜ݒሺ݌ ൌ 1|݄ሻ ൌ ߪ	 ቌܽ௜ ൅෍ ௝݄ݓ௜௝
௝

ቍ ሺ4ሻ 

 

൫݌ ௝݄ ൌ 1หݒ൯ ൌ ߪ	 ൭ ௝ܾ ൅෍ݒ௜ݓ௜௝
௜

൱ ሺ5ሻ 

where ܽ௜and ௝ܾrepresent biases which provide a mechanism for shifting the output of the sigmoid 

activation function ߪሺݔሻ ൌ 	1/ሺ1 ൅ ݁ି௫ሻ. A unit’s bias is similar to the negative of a unit’s 

threshold in other neural network models. The weight updates presented in equations 2 and 3 

show that these bias weights are updated using the same positive and negative Hebbian terms 

used in updating ܹ as shown in equation 1. 



 We can see in equation 1, that the positive Hebbian term ൫ݒ௜ ௝݄൯ௗ௔௧௔ associates data-

driven input and hidden state vectors, while the negative Hebbian term ൫ݒ௜ ௝݄൯௥௘௖௢௡ tries to 

“unlearn” the association between the corresponding reconstructed visible and hidden state 

vectors. Theoretically, the learning procedure should converge when the probability distribution 

of its internal reconstructions of the training patterns exactly match that of the corresponding 

data-driven states. In general, an RBM model’s reconstructions of the training patterns are 

obtained by brief Gibbs sampling, alternatingly sampling hidden and visible unit states that are 

nearby data-driven states using the model’s bottom-up and top-down weights respectively. 

Similar to a Hopfield network, the RBM utilizes a local and unsupervised learning rule, which 

also minimizes the free energy within the network. However, the presence of hidden units, along 

with the ability to stack RBMs to form deep networks, provides greater memory capacity. 

Furthermore, the ability to run the RBM in unclamped, top-down or generative mode, may 

provide a way of simulating dreaming along with memory reconstruction and cued recall. 

 

The Role of Young DGCs in Memory Encoding 

We recently proposed a novel RBM based model of the DG which incorporates the 

developmental trajectory of adult-born DGCs.32 In this model, a single RBM represents the 

entorhinal cortex (EC) input and DGC layer with its visible and hidden units respectively. As the 

model DGCs undergo development, they become progressively less plastic, more sparse in their 

firing, and more densely connected to their entorhinal inputs. We demonstrate how these 

properties can explain the importance of adult-generated DGCs for memory across both short 

and long time scales. 

In the model, the maturational trajectory of adult born DGCs is loosely based on mouse 



data, for DGCs from the third week of maturation onward. It is at about 3-4 weeks of age that 

adult born DGCs establish synaptic afferent and efferent connections and are able to fire action 

potentials.33 As compared to more mature neurons, young DGCs have a higher input resistance, 

lower capacitance, lower activation threshold and a slower membrane time constant. As a result, 

3-4 week old DGCs can be described as being more excitable, while having a smaller and slower 

action potentials.27,28 Moreover, the young neurons are more sparsely connected to their 

perforant pathway inputs from the EC relative to mature DGCs.34 From weeks five through eight 

the young neurons undergo a gradual decline in synaptic plasticity and are increasingly regulated 

by feedback inhibition.35 By the eighth week, the physiological properties of adult-generated 

DGCs are largely indistinguishable from their mature counterparts.34,35 

While several replacement and additive models of neurogenesis have looked at how new 

neurons affect learning,36,37 few models have considered the full range of unique properties of 

adult hippocampal neurogenesis including the developmental trajectory of adult-generated 

neurons: changes in plasticity, connectivity, excitability and survival versus apoptosis.  

We model the neural trajectory of young DGCs by incorporating additional constraints into the 

learning equation, including a dynamic learning rate and separate penalty terms for sparse 

activation (or excitablility) versus sparse connectivity. These dynamic constraints are calculated 

using a Gompertz function ݃ሺݐሻ (a roughly S-shaped curve)38 to model each of the neural growth 

and decay parameters. At each simulated time step, the age of a hidden unit is increased, and its 

constraint parameters are updated as follows. A sparse connectivity constraint describes the level 

of interconnectedness between the visible and hidden layers. Young DGCs are randomly 

connected to only 30% percent of EC input units, while mature DGCs are fully connected to the 

input layer. The connectivity proportion varies smoothly from 30% to 100% in direct proportion 



to ݃ሺݐሻ, the Gompertz function. Thus, young neurons are initially sparsely connected, and 

transition to becoming fully connected to the input layer. Similarly, the learning rate, which can 

be thought of as a neuron’s plasticity level, is defined as 1 െ ݃ሺݐሻ normalized to lie between 

0.0025 and 0.1. Thus, the plasticity level decreases over time as the neuron matures. Finally, our 

sparse activation cost increases over time, in direct proportion to ݃ሺݐሻ, scaled to lie between 0.0 

(young DGCs) and 0.9 (mature DGCs).  Thus, young neurons are unaffected by the sparseness 

constraint, while mature neurons are heavily constrained to have low firing probabilities, and 

therefore adopt sparse codes, simulating the increasingly tight regulation by feedback inhibition 

over DGCs as they mature. Given these variable properties, the learning rule can be redefined as  

 

∆ ௜ܹ௝ ൌ 	 ௝߳ ቀ൫ݒ௜ ௝݄൯ௗ௔௧௔ െ	൫ݒ௜ ௝݄൯௥௘௖௢௡ቁ െ ൫ߣ௝ ௜ܹ௝൯ െ ௝ݍ൫ݐݏ݋ܿ	 െ ൯݌ ሺ6ሻ 

 

where the learning rate ߳, weight decay ߣ and sparsity cost term ݍ are now each weighted by 

dynamically changing vectors of values rather than static hyper-parameters, while ݌ represents 

the current probability of hidden unit ݆ activating. 

Returning to our primary objective, what impact does the developmental trajectory of 

young DGCs have on hippocampal learning and memory? To investigate this, we designed a set 

of experiments to monitor proactive and retroactive memory interference over short and long 

time scales. Rodents with reduced neurogenesis show greater interference on challenging 

memory tasks, including proactive interference between previously learned information and 

newly learned information,39 and retroactive interference of newly acquired memories on the 

retrieval of previously learned information,40 when interfering items are learned in different 

sessions spaced over a relatively long time period of days to weeks. It is relatively easy to see 



why neurogenesis would reduce interference between similar items that are encountered several 

days apart, as there would be a substantial change in the population of young highly plastic 

DGCs when the second item is encountered. Interestingly, there is also evidence for a role for 

neurogenesis in resolving interference between similar items that are interleaved within a single 

learning/testing session.41 It is more challenging to explain why neurogenesis would help in this 

situation, as the population of young DGCs would not be expected to change substantially over a 

time scale of minutes. We hypothesized that the very sparse, random connectivity of young 

neurons might be crucial for generating distinct representations of similar items encountered 

within the same session. This could allow different young DGCs to respond to different features 

of the input, even though they are hyper-excitable and highly plastic.  

Given the findings in the literature described above, we sought to test whether the model 

would exhibit proactive and/or retroactive interference, either within or across learning sessions, 

as a function of neurogenesis levels. Interference was created by training our models iteratively 

on highly overlapping sets of patterns with the expectation that new patterns would be more 

difficult to learn when similar patterns were learned previously (proactive interference), and 

distally learned patterns would be more difficult to retrieve when new similar patterns were 

subsequently learned (retroactive interference). We also examined whether this interference 

would manifest within a single learning session versus across a longer time scale of several days 

of simulated learning sessions.   

In the same-session test conditions, the presence of a few young plastic neurons was 

expected to help with rapid encoding without creating interference between similar patterns. 

Likewise, for multi-session testing, given that a new pool of young neurons would be available at 

each learning session, it was expected that the neurogenesis models would perform even better 



than same-session tests. While this initial set of simulations32,42 focused on comparing the 

encoding performance of a single layer model with just the hippocampal DG layer, with and 

without neural turnover, later in this chapter we present new simulation results with a full 

multilayer hippocampal model. 

 The results of these experiments showed that the incorporation of neurogenesis led to 

improved encoding performance on both short and long time scales, in both the same and multi- 

session tests, relative to a control model consisting of an RBM with a sparsely coded DG layer 

(but lacking neurogenesis).  In the case of same session tests, the presence of a few young, more 

plastic, neurons likely provided the necessary advantage without introducing interference. 

Interestingly, the neurogenesis models had more overlap among hidden unit activations than the 

control sparse RBM network. Thus, although the RBM models were free to learn either a sparse 

code or a highly distributed code to represent the training patterns, our simulation results indicate 

that the neurogenesis models learned that it was advantageous to have less sparse activations. 

This may seem paradoxical, as sparse coding and pattern separation are widely believed to be the 

main mechanisms by which the DG avoids interference between overlapping items. Instead, our 

simulations suggest an additional mechanism for mitigating interference. The hyperactive young 

neurons generate highly distributed, overlapping codes for similar items, which allows them to 

learn distinct features despite being very sparsely connected to their inputs. At the same time, the 

neurogenesis models showed reduced proactive interference. The increase in accuracy on 

subsequently learned sets of overlapping patterns suggests that the neurogenesis models may be 

better at distinguishing novel and common elements to each group of patterns.  

     In the multi-session tests, the incorporation of neural maturation and turnover provided less 

benefit to overall performance than expected. While the non-sparsely connected neurogenesis 



model did see about a 1% increase in performance over the same session tests, the addition of 

sparse connectivity imparted no further improvement; this model performed about the same as its 

non-sparsely connected counterpart. Thus, sparse connectivity was most important in protecting 

against interference between patterns learned within a single session, while neural turnover itself 

was sufficient to mitigate interference at longer time scales. These results suggest that sparse 

connectivity and neural turnover work in equilibrium with each other, and either one may be 

relatively more important, depending on the learning task demands. 

 

Simulating the Emergence of Place Cells in RBMs with More Naturalist Inputs  

Our simulations described up to this point used highly simplified synthetic data sets of 

random patterns with varying degrees of overlap. An important next step in developing more 

realistic hippocampal models is to use more biologically realistic inputs. Since the discovery of 

place cells within the hippocampus by O’Keefe and Dovstrovsky,43 their role in spatial memory 

and learning have been a focus of hippocampal research for decades. Located in the DG, CA3 

and CA1 layers,44 place cells fire in response to very specific spatial positions or place fields.43 It 

is believed that these place cells help form a spatial map in hippocampal memory, but how are 

these place fields formed?  

There are two major types of spatial inputs to place cells that have been relatively well 

characterized: grid cells and boundary vector cells. Either or both of these inputs could drive the 

formation of place cells, as explored in the simulations reported in this section. Grid cells, first 

discovered by Hafting et al. in medial entorhinal cortex,45 have subsequently also been found in 

pre- and para-subiculum,46 all of which are prominent inputs to the hippocampus. Each grid cell 

has a tuning curve that exhibits a multimodal pattern of firing within an enclosed region of space, 



such that the cell fires in multiple regularly spaced locations. Remarkably, the locations of peak 

firing of a given grid cell correspond to the vertices of a hexagonal grid. An example of a 

simulated input grid cell’s tuning curve can be seen in the left panel of Figure 2. Thus, unlike 

place cells, grid cells respond to multiple locations.45,47 It is believed that the diversity of the grid 

cell receptive fields, with varying spatial scales and phase offsets, can encode the spatial 

locations of an entire environment.47 A second type of spatial feature that provides input to 

hippocampal place cells comes from boundary vector cells (BVCs), which are tuned to the 

distances and directions to environmental boundaries. For example, a particular boundary vector 

cell might respond best to a boundary along the west edge of an environment, whenever the rat is 

a short distance from that wall, but respond equally well to all locations along the wall. BVCs 

were first predicted by a place cell model developed by Burgess and colleagues,48,49 and 

empirical evidence for boundary vector cells was later discovered in the subiculum,50 an 

important input to the hippocampus.  

We have shown that an RBM that receives input from a visible layer consisting of 

simulated grid cells can generate spatially localized place-tuned neurons in the hidden layer of 

the RBM.51 The grid cell input was generated by applying the oscillatory interference model of 

grid cell firing developed by Burgess and colleagues52 and adapted by Hasselmo et al.53 The data 

taken as input to the model is real data recorded by Hafting et al.45 as a rat traversed a square 

environment. Hasselmo applied Burgess' model to this spatial trajectory data, using three head 

direction cells which respond in relation to the speed of the rat and its orientation. At the same 

time, their model incorporates an inherent oscillation function, which together cause the 

formation of approximately realistic grid cells. These grid cell patterns are calculated along the 

same pathway of the rat recorded by Hafting et al. An example of a grid cell pattern imposed 



over the rat's pathway (grey lines) is shown in the left panel of Figure 2.  The activities of a 

population of 100 grid cells with different spatial scale and phase tuning formed the input to the 

RBM at each point in time.  The dentate layer was also modelled by a population of 100 neurons. 

The expectation was that the RBM model would successfully be able to re-encode the simulated 

grid cell fields into place cell fields, which correspond to highly localized unimodal place fields 

within the source spatial trajectory data.  

The results of this study were somewhat mixed. About 40% of DG cells formed small 

unimodal, localized place fields, such as the one shown in the right panel of Figure 2. These are 

typical of place tuning of DG cells. Another 25% formed bimodal place fields, with two different 

locations causing the cell to fire, and the remainder showed no specific tuning. For simulations 

with only 10 DG cells, in contrast, the model developed multi-modal firing fields.  

These simulations demonstrate that the RBM model was able to re-encode the grid cell 

fields into a place cell representation. However, in order to identify the expected unimodal place 

cell firing, the model needed to be trained for 4,000 iterations with at least as many place cells as 

grid cell inputs.51 Nonetheless, this model demonstrates how an RBM can be used to simulate a 

real-world situation based on biologically realistic input patterns, bridging the gap between 

theoretical and experimental research on hippocampal coding and memory. 

******************************* 

INSERT FIGURE 2 ABOUT HERE 

******************************* 

      While many have assumed that grid cells are the primary source of input driving the spatial 

selectivity of place-tuned hippocampal neurons, there is evidence that other factors influence 

place cell tuning, including the locations of environmental boundaries and context.54,55 



Moreover, it has been argued that BVCs, rather than grid cells, might be the major driving force 

for the development of place fields.56  According to this alternative view, rather than grid cells 

and place cells forming a hierarchy of representations, they constitute complementary, 

interacting representations, with the grid cells maintaining one type of spatial representation 

driven by self-motion, and the place cells maintaining another type of spatial representation 

driven by environmental features such as landmarks (BVCs), objects, and other contextual 

features. As originally demonstrated by Hartley et al.48, a place-selective tuning curve can be 

computed from a combination of appropriately tuned BVCs.  We have further shown how this 

representation could be learned by an RBM with an input layer consisting of differently tuned 

BVCs.57   The model was trained by “traversing” an enclosed environment, generating 

corresponding input patterns across the population of BVCs inputs. From this input, the model 

learned the mapping from BVCs to place-tuned neurons.57   

      Our simulations with realistic BVC or grid cell inputs lend further support to the notion that 

the hippocampus forms generative, probabilistic models of its input, and that the RBM can 

provide a biologically plausible mechanistic account of the learning process. However, all of the 

simulations reported up to this point have been with single layer networks. We next consider a 

multi-layer stacked RBM model of the full hippocampal circuit.   

 

The Effect of Young DGCs on Learning in the Full Hippocampal Model 

The one-layer RBM models considered up to this point provide a good account of place 

tuning and neurogenesis in the DG, but in the absence of the CA3 and CA1 layers, they lack the 

capacity to model cued recall, sequence learning and replay. As a continuation of our study on 

the role of young DGCs in hippocampal learning,42 we now present a full multilayer 



hippocampal model to explore the role of young DGCs in cued recall performance. In order to 

model cued recall within the hippocampus we must extend our model to include the associative 

CA3 layer, which by the “traditional account” discussed in the introduction, performs associative 

retrieval and pattern completion. Another view of the role of the CA3, with its rich recurrent 

collateral interconnections, as well as its associative connections to area CA1, is that CA3 

(possibly jointly with CA1) plays a crucial role in the formation of temporal associations, 

anticipatory coding and sequence learning.58–60  This is the view adopted here.  

Interestingly, by adding another layer to the DG model we can address an important flaw 

in the original DG model. Our existing DG model requires reciprocal connectivity between the 

input and output layers, whereas the known anatomy of the DG does not support this 

architecture: DGCs do not project back to the EC; however, this can be addressed by 

incorporating reciprocal connections between the CA3 and the DG,61,59 and between the CA3 

and the EC via a stacked RBM architecture. Specifically, by converting the DG layer into a 

Conditional Restricted Boltzmann Machine (CRBM), this layer maintains a set of bidirectional 

connections to the CA3, and only requires a set of conditional unidirectional weights from the 

EC. This full hippocampal circuit model is used to explore the functional impact of young vs 

mature DGCs on hippocampal learning, when investigating the performance changes on memory 

recall (pattern completion) and sequence replay tasks. 

In order to incorporate the CA3 layer into the model, and model associative and temporal 

learning, a way of modelling the recurrent collaterals is required. While recurrent neural network 

learning procedures such as back-propagation through time,62–64 long short-term memory 

networks65 and liquid state machines66 have proven effective for modelling sequential data,67,68 

they are not considered to be biologically plausible. We would like to retain the appealing 



features of the RBM, while extending the operation of the network to modelling sequential data. 

One such extension is the CRBM,69 which offers a tractable approximation to a fully recurrent 

network. The CRBM extends the RBM by adding visible-to-visible and visible-to-hidden 

autoregressive weights from other (or conditional) visible inputs,69 but treats these extra inputs 

from the previous time step as fixed, rather than simulating a fully recurrent network. However, 

the CRBM is not limited to conditioning on these historical observations. By making the DG 

layer a CRBM with direct input from the EC, and including bidirectional connectivity between 

the CA3 and DG, we can eliminate the need for the feedback projection from the DC to the EC. 

To simplify, we combine the CA3 and CA1 regions into a single recurrently connected layer, 

implemented as a CRBM with input from the EC and hidden-to-hidden layer temporal 

connections.  This multilayer architecture is shown in Figure 3. Our bidirectional weights 

between the CA and DG layers represent the mossy fibre inputs to the CA3 and back-projections 

from the CA3 to the DG. Further, we can use the autoregressive visible-to-hidden weights to 

represent the EC to DG connections. By doing so, the DG will learn patterns of activation in the 

CA3 by conditioning on the EC. This provides an RBM multilayer hippocampal model that 

correctly accounts for the directionality of the known connectivity within the hippocampal 

structure. 

One advantage of multi-layer models built upon the RBM is that they can be trained one 

layer at a time and stacked together. By greedily training a 2-layer network and incorporating the 

developmental trajectory of newly generated neurons (as in our previous DG model) to the 

CRBM, we can build a full hippocampal model that supports both the recurrent connections in 

the CA3 and the unidirectional connections from the EC to the DG. We begin by training the 

CA3 layer on the EC input. We then lock the EC-to-CA3 layer weights and transform the EC 



input through these weights, producing inputs for training the DG layer. We proceed by training 

the DG layer on these CA3 outputs, conditioned on the initial EC patterns. While the CA3 layer 

supports the conditional input from previous time-steps and will be included in future work, we 

did not model this property in the simulation experiments reported here. Once both layers of the 

network are trained, the cued recall performance can be tested by presenting a test pattern as the 

initial EC input, passing through both layers, sampling the DG hidden layer and reconstructing 

the pattern back through to the EC. This architecture is based on one proposed by Becker and 

Hinton70 and is shown in Figure 3. 

******************************* 

INSERT FIGURE 3 ABOUT HERE 

******************************* 

To evaluate the role of young DGCs on learning in the full hippocampal model, the same 

experimental design from the previous study was reused in the current simulations. As before, 

we incorporated the same mechanisms for simulating the developmental trajectory of young 

DGCs. To review, we designed a set of experiments to monitor proactive and retroactive 

memory interference over short and long time scales.  The model was trained for multiple 

sessions on a different group of patterns in each session, and there was interference across 

sessions as well as within sessions.  This interference was created by training our models 

iteratively on highly similar patterns. The expectation was that new patterns would be more 

difficult to learn when similar patterns were learned previously (proactive interference), and 

distally learned patterns would be more difficult to retrieve when new similar patterns were 

subsequently learned (retroactive interference). We also examined whether this interference 

would manifest within a single learning session and/or across a longer time scale of several days 



of simulated learning sessions. The expectation was that the same improvements to encoding 

performance in the single layer model would be observed in the cued recall experiments with the 

full hippocampal model. 

 The results of these experiments are summarized in Figure 4. As with the one-layer DG 

model, the multi-layer hippocampal model showed reduced proactive and retroactive 

interference when neurogenesis was added, as shown in Figure 4, panels A and C respectively. 

As with the one-layer model, the degree of DG hidden unit overlap versus input pattern overlap 

was higher for models with neurogenesis (a decrease in pattern separation), as the more active 

young DGCs are less selective in their firing patterns (Figure 4, panel B). Across different 

simulation runs, the neurogenesis models achieved varying degrees of pattern separation (Figure 

4, panel B) but in all cases the DG overlap was much greater than that of the sparsely coded 

models lacking neurogenesis. In spite of this reduced pattern separation, the models with 

neurogenesis usually outperformed those without (Figure 4, panel D).  Interestingly, the 

improved performance for the neurogenesis models appears to be magnified relative to the single 

EC-DG layer network from the earlier study. 

******************************* 

INSERT FIGURE 4 ABOUT HERE 

******************************* 

 

Discussion 

In this chapter, we have presented several simulation studies that demonstrate how the 

RBM can be used to model the contribution of neurogenesis in the DG to learning, and to model 

hippocampal learning more generally.  We have demonstrated in both a single-layer RBM , and a 



multi-layer model of the full hippocampal circuit, that neurogenesis contributes to interference 

reduction. We have also shown that the model can be extended to incorporate more biologically 

realistic grid cell and boundary vector cell inputs. The incorporation of these more realistic 

inputs led, in both cases, to the emergence of place cells.  

     Two novel insights emerge from our simulations of models with neurogenesis. First, 

neurogenesis contributes to interference reduction at both short and long time scales. At short 

time scales, when there is interference between similar items encountered within a single 

learning session, neural turnover is less important than simply having a pool of highly plastic, 

highly active and very sparsely connected neurons available for coding. There is very little 

turnover within the course of a single learning session. All else being equal, a set of highly 

plastic, highly active young neurons could potentially lead to even greater interference, by being 

equally activated for all items encountered within a session. However, in our simulations, the 

incorporation of sparse connectivity prevented this from happening, and in fact, sparse 

connectivity was critical in allowing the young neurons to generate distinct representations of 

overlapping items within a session.  Over longer time scales of days to weeks, neurogenesis can 

reduce interference even without the sparseness constraint. This is because of ongoing 

proliferation and maturation of the DGCs. Thus, from one session to the next, the pool of 

available hyper-plastic and hyper-excitable young neurons will have evolved. This continuously 

evolving pool of young plastic neurons ensures that slightly different subsets of young neurons 

will be recruited for encoding different memories. 

      A second novel insight that emerges from our simulations of neurogenesis is that the young, 

highly active neurons can contribute to interference reduction, perhaps paradoxically, while at 

the same time decreasing pattern separation. Here, we use pattern separation in the manner in 



which it was originally intended, referring to the generation of more orthogonalized, or less 

overlapping, neural codes for overlapping input patterns. In the recent literature, the term pattern 

separation has also come into widespread use to refer to almost any behavioural task the requires 

discrimination between similar items. This is rather problematic, as discussed in further detail by 

Becker,74 as pattern separation (orthogonalization) and behavioural discrimination do not 

necessarily go hand in hand. As shown in our simulations, the addition of neurogenesis caused 

our models to generate more overlapping, and yet distinct neural codes for similar items. Thus, 

orthogonalization (pattern separation, as originally conceived by computational modellers) is not 

the only possible mechanism for achieving interference reduction.  

Future experimental studiesThe widespread view that neurogenesis increases pattern separation 

has also been called into question by some empirical findings.  For example, it is well established 

that neurogenesis levels decline with age.77,78 If neurogenesis contributes to increased pattern 

separation, then pattern separation should also decline with age. However, direct assessment of 

neural activation patterns generated in similar contexts using immediate early gene markers 

indicate that neural overlap declines with age (indicating stronger pattern separation) and this 

reduced overlap correlates with a decline in behavioural discrimination of similar contexts.79  

Thus, consistent with our simulation results, an age-related reduction in neurogenesis leads to 

greater pattern separation, and at the same time, greater interference between similar memories. 

Further empirical studies are required to tease apart the roles of the young versus older DG 

neurons in sparse coding and pattern separation, in encoding versus retrieval, in memory and 

interference reduction at short (same session) versus long time scales, and in representing novel 

information and fine details versus more general information.  

 



 

 

While our simulations indicate that in the model, young DGCs contribute to reduced 

pattern separation within the DG as a whole, it has been suggested that the young neurons could 

indirectly contribute to pattern separation amongst the mature DGC population, by generating 

increased inhibitory feedback over mature DGCs.75  It also should be noted that some, but not 

all, behavioural studies have found that neurogenesis knockdown leads to improved performance 

on high interference memory tasks.76 These studies appear to further contradict the theory that 

neurogenesis increases sparse coding, and that this sparse coding reduces memory interference. 

Thus, further empirical research is needed to fully characterize the functional significance of 

neurogenesis for mitigating memory interference. 

 

Future modeling studies 

  The simulations reported in  this chapter demonstrated how an RBM model could be used 

to model place cell fields, neurogenesis and the developmental trajectory of young DGCs with a 

hippocampal circuit. We also showed how our one-layer RBM model can be extended to a 

stacked, multi-layer RBM model of the full hippocampal circuit, but have not yet demonstrated 

the potential of this multi-layer model to simulate sequential behaviour. Future developments of 

the model will combine the more realistic inputs, i.e. grid cells and boundary vector cells, with 

the full multi-layer model including temporal associative learning in the CA3 region. This model 

should learn to encode place sequences. Moreover, in the top-down or generative mode, the 

model provides a natural account of both forward and reverse sequence replay. A related model 

has been developed by Fox, Prescott and colleagues based on particle filters.71–73 Combining 



temporal sequence learning with neurogenesis, within a single model, should enable the 

encoding of distinct event memories for overlapping temporal sequences.  
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Figure 1: Traditional view of the hippocampus as a memorization and cued retrieval device, 

with pattern separation in the dentate gyrus (DG) and pattern completion in the CA3. The CA3 

and CA1 regions receive both direct input from the entorhinal cortex (EC) via the perforant 

path, and indirect input through the trisynaptic circuit via the DG. The DG granule cells project 

to the CA3 field via mossy fiber synapses, which are few in number but are among the largest in 

the brain, such that only a few Mossy fiber synapses may be sufficient to activate a CA3 

pyramidal cell80. It has therefore been suggested that these terminals act as ‘‘detonator 

synapses,’’ so that during encoding, a sparse pattern of activation in the DG mandatorily causes 

a postsynaptic CA3 cell to fire2,3. On the other hand, during retrieval, the CA3 recurrent 

collaterals and CA3-to-CA1 Shaffer collaterals may dominate in driving CA3 and CA1 cells to 

perform associative recall3–5. Another prominent source of input to the hippocampus, frequently 

left out of the standard model, is from the subiculum.  

 

Figure 2: Sample activation of a grid cell input and corresponding dentate gyrus (DG) place cell 

activation in our Restricted Boltzmann Machine (RBM) model. Left: Example of firing pattern of 

a single grid cell used as input to the model. The red points show the grid cell activation, while 

the simulated rat’s path is shown in grey. Centre: Diagram of the RBM used to re-encode the 

grid cell firing patterns into place cell fields. The RBM model consisted of a set of visible and 

hidden units, fully inter-connected, with no within-layer connections. Right: Sample firing 

pattern of a single place cell generated by the model’s hidden units. Again, the red points show 

the place cell activation, while the simulated rat’s path is shown in grey. 

 



Figure 3: A full hippocampal model consisting of stacked Conditional Restricted Boltzmann 

Machines (CRBMs). A combined CA3 & CA1 layer is trained on entorhinal cortex (EC) input, 

and conditioned on previous EC input. This CA3 & CA1 layer subsequently acts as the input to 

train the dentate gyrus (DG) layer via the bidirectional connections, representing the mossy 

fibres and CA3 backprojections. In this architecture, the EC is treated as conditional input to the 

DG layer, replacing the bidirectional weights in our previous RBM based DG models with 

unidirectional autoregressive weights. This architecture is based on one proposed by Becker and 

Hinton (2007) using Temporal Restricted Boltzmann Machines (TRBMs).  

 

Figure 4: Performance of the multi-layer RBM hippocampal models with and without 

neurogenesis on across-session cued recall tests. The models were trained sequentially for 11 

sessions, on 11 different groups of 90 patterns. Each group of patterns learned in a given session 

had high overlap with patterns learned in other sessions. The model was tested on noisy versions 

of these training patterns after each session to test proactive interference, and after all sessions 

had completed to test retroactive interference. (A)  Proactive interference for cued recall 

accuracies during training. (B)  Retroactive interference for cued recall accuracies on each 

group of patterns. (C)  The relationship between post training recall accuracy and DG hidden 

unit activation overlap. (D)  The distribution of post training accuracy over all sequentially 

learned groups of patterns. 

 

 

 


